

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Gillcup 0.1 documentation

Welcome to Gillcup’s documentation!

Contents:

	Introduction

	The Gillcup Tutorial
	The First Steps: Drawing a Rectangle

	The Gillcup Magic: Animations

	What needs to be written

	Module Index
	gillcup.timer

	gillcup.action

	gillcup.animatedobject

	gillcup.easing

	gillcup.graphics (the graphics package)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

Introduction

Gillcup is a 2D animation library.

It is intended for both scripted (i.e. the entire animation is
known ahead of time), and interactive animations.

Gillcup is modular: the core provides a timer and animated objects with nothing
relating to graphics. Visualization classes based on Pyglet are provided in the
gillcup.graphics module.

Gillcup depends on nothing but Pyglet [http://pyglet.org/], easing
deployment. Pyglet, in turn, depends on Python and OpenGL.

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

The Gillcup Tutorial

Contents:

	The First Steps: Drawing a Rectangle
	Running Code

	Displaying Things

	Scene Trees

	Color

	Position and Scale

	Rotation and Opacity

	A Note on Aspect Ratio

	This Lesson’s Code

	The Gillcup Magic: Animations
	Revive the Rectangle

	Animations

	Actions and Effects

	Chaining Effects and Actions

	The Rainbow Cycle

	Infinite Effects

	What Was Before Us

	Dynamic Attributes

	Effects Can Be Animated

	Dummy effects

	What needs to be written
	Scene Tree Dumps

	Easing

	Sprites

	Text

	Alpha Layers and Pixelization

	The Demo

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	The Gillcup Tutorial

The First Steps: Drawing a Rectangle

This section is for beginner animators (although Python knowledge is required).
If you have some experience with object-oriented graphics, skip to the last
section and see if you understand the code there.

Running Code

Let’s get some results! Create a Python file and paste the following into it:

from gillcup.graphics import mainwindow
from gillcup.graphics.layer import Layer
rootLayer = Layer()

mainwindow.run(rootLayer)

When you run it, you will get a blank window.

Let’s see what those four lines mean:

from gillcup.graphics import mainwindow

This imports the mainwindow module, which has
convenience functions for displaying animations you might create.
You can use them as-is, or look at the code for an example of how to write your
own.

Next up:

from gillcup.graphics.layer import Layer
rootLayer = Layer()

Here we use the Layer class. Think of a Layer as the
term is used in image processing application: a transparent sheet on which
objects can be drawn. In this case, we initialize an empty Layer and nothing
more. That’s why our window was empty!

On to the last line:

mainwindow.run(rootLayer)

This is where we call a convenience function to “run” our Layer, that is,
display it and any animations that are on it. There’s not much to see now,
but that’s about to change in the next section!

Displaying Things

In this section, we will draw a rectangle in the middle of the window.

Modify your Python file to read:

from gillcup.graphics import mainwindow
from gillcup.graphics.layer import Layer
from gillcup.graphics.colorrect import ColorRect
rootLayer = Layer()

rect = ColorRect(rootLayer)

mainwindow.run(rootLayer)

When you run this, you will see that the window is now grey.

There are two added lines: an import and an instantiation of a ColorRect class.
As the name suggests, the ColorRect class represents a colored rectangle.
In this case, the rectangle is grey, and completely covers the window.
We’ll change that later; first we need to explain a debugging call that will
be useful later.

Scene Trees

The argument we gave to our ColorRect is the “parent”. Every Gillcup graphics
object can have a parent layer, which is given as the first argument to the
constructor. This makes the object attach to its parent.

Of course, Layers themselves are also such objects, which can lead to complex
structures called “scene trees”. If you’re ever confused about the structure
of what is displayer on the screen, you can call:

rootLayer.dump()

This will print out the scene tree to standard output. In our case, we have:

Layer x(768, 576)
 ColorRect

This is a very simple scene tree consisting of a Layer scaled to 768x576
(the size of the window), and a ColorRect. The indentation shows the ColorRect
is contained in the Layer.

Color

I don’t know about you, but I don’t like grey too much. It would be much more
interesting to color our screen, say, blue. Of course I wouldn’t say that if
it wasn’t ridiculously easy to do; just change the ColorRect call to:

rect = ColorRect(rootLayer, color=(0, 0, 1))

and run the script again. Looking at the output, maybe this particular hue
wasn’t such a good idea, but keep with me.

This example shows us two things:

	We can give named arguments to constructors of Gillcup graphics objects to
set attributes such as color.

	Colors in Gillcup are given as RGB triples of floats in the 0..1 range.

These are true generally, although I might add that setting attributes also
works the Python way, as you can test by adding the following line just above
the mainwindow.run() call:

rect.color = (1, 1, 0) # No! Yellow!

Position and Scale

There are more attributes that you can set than colors, of course. For
animations, we will want to make ourselves familiar with three of these:
position, scale, and anchorPoint.

First, an introduction to Gillcup’s geometry: The “x” axis points right,
and the “y” axis points up (i.e. not down as you may be used to from GUI
toolkits). The origin — that is, the (0, 0) point – is in the lower left
of the window. This is standard in math, OpenGL and Pyglet.

The mainwindow.run() scales (resizes) its root layer so that the (1, 1) point
is in the upper right corner of the window.

The ColorRect class introduced earlier has the same geometry as the screen:
(0, 0) is in the lower left corner, (1, 1) in the upper right. It’s easy to see
now why our rectangle covers the screen.

Let’s now make the rectangle a bit smaller, so we can see that it is actually
a rectangle. Change the ColorRect call to this:

rect = ColorRect(rootLayer, scale=(0.5, 0.5))

This will resize the rectangle by 1/2 in each direction, so that it rectangle
only covers a quarter of the screen. But, the resize is relative to the origin,
the lower left corner of the window. Wouldn’t it be better to have the
rectangle centered?

To change the point a graphict object scales around, we set the anchorPoint
property. You can change our call to:

rect = ColorRect(rootLayer, scale=(0.5, 0.5), anchorPoint=(0.5, 0.5))

As you can see, that didn’t work. This is because anchorPoint is not just
the central point for scaling, but also for rotations, and, most importantly,
for the position of the object.

So, we will also need to set the position attribute. The position specifies
where, relative to the parent, an object’s anchorPoint is. We would like
it to be in the middle of the layer.

Our instantiation line is getting longer and longer, so we may want to split
it in seeral pieces. (In real life, if you find out you are reusing the
same arguments over and over, you’re encouraged to subclass or make a factory
function.):

rect = ColorRect(rootLayer)
rect.scale = (0.5, 0.5)
rect.anchorPoint = (0.5, 0.5)
rect.position = (0.5, 0.5)

And now, we have a nice rectangle centered on the screen!

Rotation and Opacity

The final two attributes I want to cover are rotation and opacity. These
are straightforward to use, as they are just numbers. Just keep in mind that
the rotation is in degrees. (Radians are, unfortunately, a bit unwieldy for
animation use.) So, for a see-through rectangle on its side, add these:

rect.rotation = 45
rect.opacity = 0.75

What is this?, I hear you say. It’s not a rectangle any more! Read the next
section for an explanation (or excuse, rather).

A Note on Aspect Ratio

Gillcup does not care about the spect ratio. It is your own
responsibility to scale your layers to the correct size, or use a rectangular
window (using the width and height arguments to mainwindow.run()).

The reason is that there is no universally right solution to this problem;
letting you fix it hovewer you want is better than having you undo Gillcup’s
fix first and then aply your own.

This Lesson’s Code

Here is the complete code we’ve come up with, commented for those that skipped
to here:

Boilerplate
from gillcup.graphics import mainwindow
from gillcup.graphics.layer import Layer
from gillcup.graphics.colorrect import ColorRect
rootLayer = Layer()

Create a rectangle and set various attributes on it
rect = ColorRect(rootLayer)
rect.scale = (0.5, 0.5) # Resize to 1/2
rect.anchorPoint = (0.5, 0.5) # Move origin to the center
rect.position = (0.5, 0.5) # Move to the center of the screen

rect.rotation = 45 # Rotate 45°
rect.opacity = 0.75 # Make it see-through a bit

rect.color = (1, 1, 0) # Make it yellow

Show the result
mainwindow.run(rootLayer)

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	The Gillcup Tutorial

The Gillcup Magic: Animations

So, you’ve gone throught the first part of the tutorial, and you still think
you can take more? Yes? Then here we go.

Revive the Rectangle

Again, let’s start with some simple code:

from gillcup.graphics import mainwindow
from gillcup.graphics.layer import Layer
from gillcup.graphics.colorrect import ColorRect
rootLayer = Layer(timer=mainwindow.getMainTimer())

rect = ColorRect(rootLayer, color=(1, 1, 0))
rect.scale = (0.5, 0.5)
rect.anchorPoint = (0.5, 0.5)
rect.position = (0.5, 0.5)

rect.rotateTo(45)

mainwindow.run(rootLayer)

This might seem very familiar to you – it’s very similar to the code from
the first part of the tutorial. What is different now is that it’s using
animation API for the rotation in the lines:

rootLayer = Layer(timer=mainwindow.getMainTimer())

rect.rotateTo(45)

If we want to animate, the layers need to know the current time; the first line
says that we are using a normal timer that reflects the system clock’s seconds
and starts when the main window is displayed. This is great for interactive
animations; but other timers are possible: if we wanted to render a movie, we’d
use a timer that advances by a fixed amount after we’re drawn each frame.

The second line applies a very uninteresting animation to the rectangle,
rotating it instantly by 45°. This is about as disappointing as the blank
window from the previous part of the tutorial; let’s fix that.

Animations

Change the rotation line to:

rect.rotateTo(45, time=3)

If you can’t see anything new, make sure that you’re running this as a
script, the run() convenience function doesn’t like to be called multiple
times.

If you saw movement, congratulations! You’ve made your first Gillcup animation.
As you can see, the setting of the rotation took 3 seconds [1] to complete,
smoothly transitioning from the previous value (0°) to 45°.

Tuple Animations

Try adding the following line:

rect.moveTo(0.25, 0.25, time=2)

As you can see, it’s not only numbers that can be animated: tuples of numbers
can, too.

Be aware, however, that Gillcup’s default animations only animate numbers and
tuples of numbers. Don’t set a property you want to animate to a list, for
example.

Going Lower: the Animate Method

Now, replace the animation lines with this:

rect.animate('rotation', 45, time=3)
rect.animate('position', (0.25, 0.25), time=3)

As you can see, it does the same thing. In fact, the rotateTo and moveTo
methods are just a shortcut for “animate”.

The animate method can be used on any instance attribute of an AnimatedObject
(of which Layer & co. are subclasses).
The animation system doesn’t know that “rotation” and “position” have some
meaning when the object is drawn. What this means for you is that you can
animate your own attributes, even on your own objects (as long as you subclass
them from gillcup.animatedobject.AnimatedObject). Remember this, for it will
be useful later.

Delayed Actions

Now, delete your animation lines once again and put in the following instead:

rect.rotateTo(45, time=3, dt=1)

This time, the animation starts a second after the window is shown.

Actions and Effects

Once again replace the animation line, this time with:

action = rect.rotationTo(45, time=3)
rect.apply(action, dt=1)

It should do the same thing as last time.

What we are doing here is first obtaining an animation object, and then
applying it later. This approach has the advantage that you can keep the
animation around, and use it at a later time.

The animation object is the only thing you need to keep; any AnimatedObject
can be used to apply it (as long as it shares the same timer [2]).

Note that the “dt” (delay) argument is passed to apply().

To make this a bit less confusing, let’s introduce a bit of terminology.
We have been using the term “animation” somewhat vaguely for a combination of
two different concepts that Gillcup calls Actions and Effects.

Actions

An Action is something that can be scheduled for the future: think of it as
a delayed function call. The object that the rotationTo method returns is such
an action. In our case, the action starts an animation when called.

You can use any function as an action. Try putting the following before your
mainwindow.run call:

def printMessage():
 print "Starting to turn!"
rect.apply(printMessage, dt=1)

Of course, an Action can be more than just a packaged function call.
EffectAction, which rotationTo and friends return, knows about the Effect
it’s going to apply, and it can use this knowledge to its advantage.

Effects

Effects are, in essence, attribute modifiers. They change an AnimatedObject’s
attribute, usually based on the time and the attribute’s previous value.

Effects “last” for a longer time, as opposed to Actions which are instantaneous
(as far as Gillcup’s timer is concerned).

The simplest useful effect, which we have been using, just linearly
interpolates between the old value and a new value. There are, of course,
lots of other behaviors for effects, which we’ll cover later. But even the
simplest effects have one useful functionality: chaining.

Chaining Effects and Actions

Just to make sure we’re on the same ground, I’ll give the whole code for this
example:

from gillcup.graphics import mainwindow
from gillcup.graphics.layer import Layer
from gillcup.graphics.colorrect import ColorRect
rootLayer = Layer(timer=mainwindow.getMainTimer())

rect = ColorRect(rootLayer, color=(1, 1, 0))
rect.scale = (0.5, 0.5)
rect.anchorPoint = (0.5, 0.5)
rect.position = (0.5, 0.5)

action = rect.movementTo(0, 0, time=1)
action.chain(rect.movementTo(0.5, 0.5, time=1))
rect.apply(action)

mainwindow.run(rootLayer)

What happens here? Our yellow friend moves to a corner, and then goes back.

As you can see, we called the chain() method to get this behavior. What an
Effect’s chain() method does is simple: it schedules the given Action to happen
when the Effect is done.

We have, however, been using an Action’s chain(). This does pretty much the
same: it chains the scheduled actions on the Effect it applies. Or, if it’s
not an EffectAction, runs them just after it’s done.

The chain method will also take a “dt” argument to delay the new Action.

If you are using plain functions, you can wrap them in
gillcup.action.FunctionAction to get the chain() method. Or, just schedule
whatever you’re chaining for the same time as your function (scheduling is
stable: if two things are scheduled for the same time, they will happen
in the order they were scheduled).

The Rainbow Cycle

Disclaimer: Sit in a well-lit room, a good distance from the screen.
If you fear epileptic seizures, stop reading and forget about making
animations.

Please note that Actions and Effects are intended for one-time use. Don’t
schedule the same Action, or apply the same Effect more times. If you need to,
create an equivalent Action and Effect.

This doesn’t apply to plain functions, since when they’re scheduled, a new
Action is always made. So, you can do the following for an infinite loop:

def rainbow():
 # Cycle through the colors...
 action = rect.animate('color', (1, 0, 0), time=0.2)
 action = action.chain(rect.animation('color', (1, 1, 0), time=0.2))
 action = action.chain(rect.animation('color', (0, 1, 0), time=0.2))
 action = action.chain(rect.animation('color', (0, 1, 1), time=0.2))
 action = action.chain(rect.animation('color', (0, 0, 1), time=0.2))
 action = action.chain(rect.animation('color', (1, 0, 1), time=0.2))
 # ... then go one more time
 action.chain(rainbow)

rect.apply(rainbow)

Try it! If you haven’t deleted your movement animation, you get to see that
the color cycle and the movement co-exist with each other peacefully.

You also get to see that you have to be a bit careful when using Gillcup’s
methods: there’s “animate”, which makes an animation and applies it
immediately, and “animation”, which creates an animation and gives you an
Action that starts it. The graphic object convenience functions also come in
such pairs: rotateTo/rotationTo, moveTo/movementTo, and so on. Be sure you
know which one you’re using.

Another thing you might have noticed is that both flavors of animation methods
and chain() all return an Action object. Notice the above pattern of chaining
and setting the chain’s end; it may useful to you.

Infinite Effects

Replace your animation by the following:

rect.rotateTo(90, time=1, infinite=True)

This shows how you can make an infinite effect. It rotates out rectangle by
90° in 1 second, then instead of ending, it goes on rotating.

It doesn’t make much sense to chain anything to such an animation, but if you
do, the chained Action will run at the time specified by the “time” argument,
not when the effect is done.

What Was Before Us

This section’s animation code will look like this:

rect.rotateTo(90, time=1, infinite=True)
rect.rotateTo(0, time=5, dt=2)
rect.animate('color', (1, 0, 0), dt=2)

What happens here? The rectangle is rotating happily at the speed of 90°/s,
and 2 seconds later it changes to red and starts rotating back to its original
position.

You might notice, though, that when the rectangle turns red, it doesn’t
suddenly start rotating back. The transition is smooth. Why is that?

When I said earlier that a simple Effect interpolates between an old value
and a new value, I was only telling half of the truth. The “old value” includes
any effect that was on the attribute before. That is, by default an Effect
interpolates between a dynamic value and the given endpoint.

Dynamic Attributes

Replace you animation code by this:

import math
def sinOfTime():
 return math.sin(rect.timer.time) * 90
rect.setDynamicAttribute('rotation', sinOfTime)

As you can see, you can set any function you want to work as an attribute
getter for AnimatedObjects. It will play along nicely with other effects, too.

Also, the rect.timer.time construction is new. I hope it doesn’t need much
explanation, though. You can use mainwindow.getMainTimer().time for the same
effect.

Effects Can Be Animated

Now, try this:

import math
def blueCyan():
 sinOfTime = math.sin(rect.timer.time * 5)
 return 0, 0.5 + sinOfTime / 2, 1
def redYellow():
 sinOfTime = math.sin(rect.timer.time * 10)
 return 1, 0.5 + sinOfTime / 2, 0
rect.setDynamicAttribute('color', blueCyan)

Try both color schemes, but then put blueCyan back and add:

action = rect.animate('color', (1, 1, 0), time=2, dt=1, keep=True)
action.effect.setDynamicAttribute('value', redYellow)

Effects are AnimatedObjects, and can be themselves animated. You just have to
know what attributes to look for. One useful attribute, “value”, represents
the effect’s “goal”; it is the value set by the animation method that created
the effect.

What we did above is animate this “goal”, thus making the effect interpolate
towards an animation. And since there was an animation in the beginning too,
we interpolated between two animations!

You can build arbitrarily complex animations by using this scheme.

If you are not dead tired by now, you might have noticed the “keep” attribute
above. Read on to know what it does.

When Effects end

When a simple effect ends, it is replaced by a much simpler effect that always
gives a constant value. This is done to prevent long “chains” of effects
from using up memory and the processor, because, as shown above, effects are
not replaced when animating.

The animation functions try to be smart and detect when you are doing advanced
stuff and disable this behavior if you are not applying just a simple effect.
For example, the infinite rotation above is not killed in this way.

However, it is not always possible to detect when you’re going to need the
effect after it ends, so to be on the safe side add a keep=True argument
to the animation method when you manipulate the Effect later.

Dummy effects

[XXX]

	[1]	The default timer’s time happens to be in seconds; the actual animations
don’t care about what the unit of time is.

	[2]	The timer of the applying object will be used for the animation. You
can theoretically use this for interesting results, but generally mixing
multiple timers is just confusing.

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	The Gillcup Tutorial

What needs to be written

[XXX] As you can see, this section is still unfinished.

Scene Tree Dumps

[XXX]

Reparenting

Easing

[XXX]

Sprites

[XXX]

Text

[XXX]

Alpha Layers and Pixelization

[XXX]

The Demo

[XXX]

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

Module Index

Contents:

	gillcup.timer
	Obtaining timers

	Timers and layers

	Module Contents

	gillcup.action

	gillcup.animatedobject

	gillcup.easing

	gillcup.graphics (the graphics package)
	gillcup.graphics.mainwindow

	gillcup.graphics.layer

	gillcup.graphics.colorrect

	gillcup.graphics.sprite

	gillcup.graphics.baselayer

	gillcup.graphics.helpers

	gillcup.graphics.text

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

gillcup.timer

In Gillcup, animation means two things: running code at specified times and
changing object properties with time.

You will notice that the preceding sentence mentions time quite a lot. But what
is this time?

You could determine time by looking at the computer’s clock, but that would
only work with real-time animations. When you’d want to render a movie,
where each frame takes 2 seconds to draw and there are 25 frames per second,
you’d be stuck.

That’s why Gillcup introduces a flexible source of time: Timers. These are
objects with three attributes:

	time, which gives the current time (“now”) on the timer,

	advance(dt), which advances the timer by “dt” units, and

	schedule(dt, action), which schedules an “action” to happen “dt” time units
from “now”

Obtaining timers

The run() function from graphics.mainwindow automatically creates a timer that
is tied to the system clock (or, rather, the Pyglet clock; this means it won’t
run if the Pyglet main loop is not running); this is a singleton that can be
obtained through the mainwindow.getMainTimer() function.

New timers can be created by instantiating the gillcup.timer.Timer class; of
course, you must call advance() on these manually.

Timers and layers

Each graphics object can have its timer, which is used for animations.
It can be set as the “timer” argument to __init__; if left out, the object
inherits its parent timer. It can be changed by setting the “timer” attribute.

If an object has no timer and an animation is requested on it, it searches up
through its parent and its descendants before it dies with an error, and the
mainwindow convenience functions automatically set the root layer’s timer
if one’s not set.

An object doesn’t actually need the timer itself; it is only used when creating
animations on it. Even then, a different timer can be specified. However,
having the timer available is very convenient.

Module Contents

	
class gillcup.timer.Timer(time=0)[source]

	Keeps track of time.

Use advance() to push time forward.
This is done manually to allow non-realtime simulations/renders.
Time can only be moved forward, because events can change state.

Use schedule() to schedule an event for the future.

	
advance(dt)[source]

	Call to advance the timer

Steps the timer dt units to the future, running any scheduled Actions.

	
schedule(dt, *actions)[source]

	Schedule actions to run “dt” time units from the current time

Scheduling is stable: if two things are scheduled for the same
time, they will be called in the order they were scheduled.

Returns the first action scheduled

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

gillcup.action

[XXX]

	
class gillcup.action.Action[source]

	Something that can be scheduled: a discrete event.

Also, other Actions can be chained to it.
These will be run when the “parent” Action, or an effect applied by it,
finishes.

Actions may not be callable. If they are, they won’t be scheduled as
actions.

	
chain(action, *others, **kwargs)[source]

	Schedule an Action (or more) at the end of this Action

The dt argument can be given to delay the runnin of the execution
by the specified time.

For EffectAction, the actions are scheduled after the applied effect
ends.

If this action has already finished, the chained ones are scheduled
immediately.

	
delay(dt)[source]

	Schedule a null action at time dt (useful in chaining)

	
run(timer)[source]

	Run this action.

Called from a Timer.

	
class gillcup.action.EffectAction(effect, *args, **kwargs)[source]

	An Action that applies an effect when run

effect is applied when this Action is run; the timer, args and kwargs
are passed to it.

args should be the object and attribute to apply the Effect to.

	
class gillcup.action.FunctionAction(func, *args, **options)[source]

	An Action that executes a function when run

func is called when this Action is run; args are passed to it

Additional options:

	kwargs: a dict of named arguments to pass to the function

	passTimer: if True, the timer will be passed as an additional named
argument

	
class gillcup.action.WaitForAll(*actions)[source]

	An Action that waits for other actions, and runs when they all are run

	
class gillcup.action.WaitForAny(*actions)[source]

	An Action that waits for other actions, and runs when any of them is run

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

gillcup.animatedobject

[XXX]

	
class gillcup.animatedobject.AnimatedObject(timer=None)[source]

	An objects whose attributes can be animated

Animated attribute must be instance (not class) attribute in order to
work.
Every animated attribute must be assigned a normal value before it can be
animated. Usually this is done in the constructor.

Each AnimatedObject needs a timer to animate. This can be either
through an argument to the animate method, or in an instance attribute.
The constructor takes a timer value to set the instance attribute to.

	
animate(attribute, value, dt=0, timer=None, **options)[source]

	Animate the given attribute

Calls self.apply(self.animation(...), dt=dt).
Returns the resulting Action.

	
animation(attribute, value, **options)[source]

	Return an animation Action for the given attribute.

When this Action is run, the given attribute will be gradually set
to the new value. The style of the animation is given by options.

See gillcup.effect.animation() for what options are available.

	
apply(action, dt=0, timer=None)[source]

	Schedule action on this object’s timer

dt is the time in which the Action is to be executed (measured from the
timer’s current time).
timer can be given to specify the timer to use; if None, self’s timer
will be used

	
dynamicAttributeSetter(attribute, getter)[source]

	Returns an Action to set an attribute getter

After the returned Action runs, the given getter function will be used
to provide values for the given attribute.

	
setDynamicAttribute(attribute, getter, dt=0, timer=None)[source]

	Set a getter for an attribute

If dt==0, sets getter as the attribute getter for the given attribute.

Otherwise, calls
self.apply(self.dynamicAttributeSetter(attribute, getter), dt=dt).

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

gillcup.easing

[XXX]

Adapded partially from Robert Penner’s Easing Equations, as they
appear in the Qt library. The original license follows:

TERMS OF USE - EASING EQUATIONS

Open source under the BSD License.

Copyright © 2001 Robert Penner

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the author nor the names of contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

	
gillcup.easing.bounce(amplitude)[source]

	Bounce easing

	
gillcup.easing.circ(t)[source]

	Circular easing

	
gillcup.easing.cubic(t)[source]

	Cubic easing

t → t**3

	
gillcup.easing.elastic(period, amplitude=1)[source]

	Elastic easing

	
gillcup.easing.exp(t)[source]

	Exponential easing

	
gillcup.easing.linear(t)[source]

	Linear interpolation

t → t

	
gillcup.easing.normalized(func)[source]

	Decorator to normalize another easing function

Normalizing is done so that f(0) == 0 and f(1) == 1.

	
gillcup.easing.overshoot(amount)[source]

	Overshoot easing

	
gillcup.easing.quad(t)[source]

	Quadratic easing

t → t**2

	
gillcup.easing.quart(t)[source]

	Quartic easing

t → t**4

	
gillcup.easing.quint(t)[source]

	Quintic easing

t → t**5

	
gillcup.easing.showcase(items=['(poly)', 'sin', 'exp', 'circ', 'elastic_example', 'overshoot_example', 'bounce_example'])[source]

	Show graphs of the easing functions in this module

	
gillcup.easing.sin(t)[source]

	Sinusoidal easing

Quarter of a cosine wave

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

gillcup.graphics

Contents:

	gillcup.graphics.mainwindow

	gillcup.graphics.layer

	gillcup.graphics.colorrect

	gillcup.graphics.sprite

	gillcup.graphics.baselayer

	gillcup.graphics.helpers

	gillcup.graphics.text

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.mainwindow

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.layer

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.colorrect

[XXX]

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.sprite

[XXX]

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.baselayer

[XXX] The convenience animation methods need manual docs

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.helpers

[XXX]

	
gillcup.graphics.helpers.extend_tuple(args, default=0)[source]

	Extend the given tuple to a triple, padding by the given value

	
gillcup.graphics.helpers.extend_tuple_copy(args)[source]

	Extend the given tuple to a triple, copying the last value

	
gillcup.graphics.helpers.nullContextManager(*args, **kwds)[source]

	A context manager that does nothing

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Gillcup 0.1 documentation

 	Module Index

 	gillcup.graphics

gillcup.graphics.text

[XXX]

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	Gillcup 0.1 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 gillcup	

 	
 	
 gillcup.action	

 	
 	
 gillcup.animatedobject	

 	
 	
 gillcup.easing	

 	
 	
 gillcup.graphics.helpers	

 	
 	
 gillcup.timer	

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 Navigation

 	
 index

 	
 modules |

 	Gillcup 0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | O
 | Q
 | R
 | S
 | T
 | W

A

 	

 	Action (class in gillcup.action)

 	advance() (gillcup.timer.Timer method)

 	animate() (gillcup.animatedobject.AnimatedObject method)

 	

 	AnimatedObject (class in gillcup.animatedobject)

 	animation() (gillcup.animatedobject.AnimatedObject method)

 	apply() (gillcup.animatedobject.AnimatedObject method)

B

 	

 	bounce() (in module gillcup.easing)

C

 	

 	chain() (gillcup.action.Action method)

 	circ() (in module gillcup.easing)

 	

 	cubic() (in module gillcup.easing)

D

 	

 	delay() (gillcup.action.Action method)

 	

 	dynamicAttributeSetter() (gillcup.animatedobject.AnimatedObject method)

E

 	

 	EffectAction (class in gillcup.action)

 	elastic() (in module gillcup.easing)

 	exp() (in module gillcup.easing)

 	

 	extend_tuple() (in module gillcup.graphics.helpers)

 	extend_tuple_copy() (in module gillcup.graphics.helpers)

F

 	

 	FunctionAction (class in gillcup.action)

G

 	

 	gillcup.action (module)

 	gillcup.animatedobject (module)

 	gillcup.easing (module)

 	

 	gillcup.graphics.helpers (module)

 	gillcup.timer (module)

L

 	

 	linear() (in module gillcup.easing)

N

 	

 	normalized() (in module gillcup.easing)

 	

 	nullContextManager() (in module gillcup.graphics.helpers)

O

 	

 	overshoot() (in module gillcup.easing)

Q

 	

 	quad() (in module gillcup.easing)

 	quart() (in module gillcup.easing)

 	

 	quint() (in module gillcup.easing)

R

 	

 	run() (gillcup.action.Action method)

S

 	

 	schedule() (gillcup.timer.Timer method)

 	setDynamicAttribute() (gillcup.animatedobject.AnimatedObject method)

 	

 	showcase() (in module gillcup.easing)

 	sin() (in module gillcup.easing)

T

 	

 	Timer (class in gillcup.timer)

W

 	

 	WaitForAll (class in gillcup.action)

 	

 	WaitForAny (class in gillcup.action)

 Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	old

 	latest

 _modules/gillcup/easing.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 		Module code »

 Source code for gillcup.easing

#! /usr/bin/python
Encoding: UTF-8

"""
Adapded partially from Robert Penner's Easing Equations, as they
appear in the Qt library. The original license follows:

TERMS OF USE - EASING EQUATIONS

Open source under the BSD License.

Copyright © 2001 Robert Penner

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the author nor the names of contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""

from __future__ import division

import math

[docs]def normalized(func):
 """Decorator to normalize another easing function

 Normalizing is done so that f(0) == 0 and f(1) == 1.
 """
 min = func(0)
 max = func(1)
 if (min, max) == (0, 1):
 return func
 range = max - min
 def normalized(t):
 return min + func(t) / range
 try:
 normalized.__name__ = func.__name__ + '_normalized'
 except AttributeError:
 pass
 return normalized

def _add_postfix(decorated, func, postfix):
 try:
 decorated.__name__ = func.__name__ + '_' + postfix
 except AttributeError:
 pass

def easeIn(func):
 return func

def easeOut(func):
 def ease_out(t):
 return 1 - func(1 - t)
 _add_postfix(ease_out, func, 'out')
 return ease_out

def easeOutIn(func):
 def ease_outIn(t):
 if t < 0.5:
 return (1 - func(1 - 2 * t)) / 2
 else:
 return func(2 * (t - .5)) / 2 + .5
 _add_postfix(ease_outIn, func, 'outIn')
 return ease_outIn

def easeInOut(func):
 def ease_outIn(t):
 if t < 0.5:
 return func(2 * t) / 2
 else:
 return 1 - func(1 - 2 * (t - .5)) / 2
 _add_postfix(ease_outIn, func, 'outIn')
 return ease_outIn

def tweenfunc(func):
 func.in_ = easeIn(func)
 func.out = easeOut(func)
 func.inOut = easeInOut(func)
 func.outIn = easeOutIn(func)
 return func

@tweenfunc
[docs]def linear(t):
 """Linear interpolation

 t → t
 """
 return t

@tweenfunc
[docs]def quad(t):
 """Quadratic easing

 t → t**2
 """
 return t ** 2

@tweenfunc
[docs]def cubic(t):
 """Cubic easing

 t → t**3
 """
 return t ** 3

@tweenfunc
[docs]def quart(t):
 """Quartic easing

 t → t**4
 """
 return t ** 4

@tweenfunc
[docs]def quint(t):
 """Quintic easing

 t → t**5
 """
 return t ** 5

@tweenfunc
[docs]def sin(t):
 """Sinusoidal easing

 Quarter of a cosine wave
 """
 return (-math.cos(t / 2 * math.pi) + 1)

@tweenfunc
[docs]def exp(t):
 """Exponential easing
 """
 if t in (0, 1):
 return t
 else:
 return 2.0 ** (10 * (t - 1)) - 0.001

@tweenfunc
[docs]def circ(t):
 """Circular easing
 """
 try:
 return 1 - math.sqrt(1 - t * t)
 except ValueError:
 return 0

[docs]def elastic(period, amplitude=1):
 """Elastic easing
 """
 @tweenfunc
 def elastic(t):
 return exp(t) * math.cos((1 - t) * 2 * math.pi / period) * amplitude
 return elastic

[docs]def overshoot(amount):
 """Overshoot easing
 """
 @tweenfunc
 def overshoot(t):
 t = 1 - t
 return 1 - t * t * ((amount + 1) * t - amount)
 return overshoot

def _bounce_helper(t, c, a):
 if t == 1:
 return c
 if t < 4 / 11:
 return c * (7.5625 * t * t)
 elif t < 8 / 11:
 t -= 6 / 11.0
 return -a * (1. - (7.5625 * t * t + .75)) + c
 elif t < 10 / 11:
 t -= 9 / 11
 return -a * (1. - (7.5625 * t * t + .9375)) + c
 else:
 t -= 21 / 22
 return -a * (1. - (7.5625 * t * t + .984375)) + c

[docs]def bounce(amplitude):
 """Bounce easing
 """
 @tweenfunc
 def bounce(t):
 return _bounce_helper(t, 1, amplitude)
 return bounce

Execute the file for a gallery of easing funcs (matplotlib must be installed)

elastic_example = elastic(.15)
overshoot_example = overshoot(1)
bounce_example = bounce(1)

[docs]def showcase(
 items='(poly) sin exp circ elastic_example overshoot_example '
 'bounce_example'.split()
):
 """Show graphs of the easing functions in this module
 """
 import pylab

 time = pylab.arange(0.0, 1.01, 0.01)
 for i, n in enumerate(items):
 if n == '(poly)':
 funcs = 'linear quad cubic quart quint'.split()
 else:
 funcs = [n]
 for j, a in enumerate((easeIn, easeOut, easeInOut, easeOutIn)):
 pylab.subplot(len(items), 4, i * 4 + 1 + j)
 for funcname in funcs:
 func = a(globals()[funcname])
 s = [func(t) for t in time]
 pylab.plot(time, s, linewidth=1.0)
 if i == 0:
 pylab.title(a.__name__)
 if j == 0:
 title, sep, end = n.partition('_example')
 pylab.ylabel(title)
 pylab.show()

if __name__ == '__main__':
 showcase()

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_modules/gillcup/timer.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 		Module code »

 Source code for gillcup.timer

Encoding: UTF-8

"""
In Gillcup, animation means two things: running code at specified times and
changing object properties with time.

You will notice that the preceding sentence mentions time quite a lot. But what
is this time?

You could determine time by looking at the computer's clock, but that would
only work with real-time animations. When you'd want to render a movie,
where each frame takes 2 seconds to draw and there are 25 frames per second,
you'd be stuck.

That's why Gillcup introduces a flexible source of time: Timers. These are
objects with three attributes:

- time, which gives the current time (“now”) on the timer,
- advance(dt), which advances the timer by “dt” units, and
- schedule(dt, action), which schedules an “action” to happen “dt” time units
 from “now”

Obtaining timers
................

The run() function from graphics.mainwindow automatically creates a timer that
is tied to the system clock (or, rather, the Pyglet clock; this means it won't
run if the Pyglet main loop is not running); this is a singleton that can be
obtained through the mainwindow.getMainTimer() function.

New timers can be created by instantiating the gillcup.timer.Timer class; of
course, you must call advance() on these manually.

Timers and layers
.................

Each graphics object can have its timer, which is used for animations.
It can be set as the “timer” argument to __init__; if left out, the object
inherits its parent timer. It can be changed by setting the “timer” attribute.

If an object has no timer and an animation is requested on it, it searches up
through its parent and its descendants before it dies with an error, and the
mainwindow convenience functions automatically set the root layer's timer
if one's not set.

An object doesn't actually need the timer itself; it is only used when creating
animations on it. Even then, a different timer can be specified. However,
having the timer available is very convenient.

Module Contents
...............
"""

import heapq
import collections
import weakref

from gillcup.action import FunctionAction

_EventHeapEntry = collections.namedtuple(
 'EventHeapEntry',
 'time index action'
)

[docs]class Timer(object):
 """Keeps track of time.

 Use advance() to push time forward.
 This is done manually to allow non-realtime simulations/renders.
 Time can only be moved forward, because events can change state.

 Use schedule() to schedule an event for the future.
 """
 def __init__(self, time=0):
 self.events = []
 self.time = time
 self.currentEventIndex = 0

[docs] def advance(self, dt):
 """Call to advance the timer

 Steps the timer dt units to the future, running any scheduled Actions.
 """
 if dt < 0:
 raise ValueError("Can't advance into the past")
 while self.events and self.events[0].time <= self.time + dt:
 entry = heapq.heappop(self.events)
 dt -= entry.time - self.time
 self.time = entry.time
 entry.action.run(self)
 self.time += dt

[docs] def schedule(self, dt, *actions):
 """Schedule actions to run "dt" time units from the current time

 Scheduling is stable: if two things are scheduled for the same
 time, they will be called in the order they were scheduled.

 Returns the first action scheduled
 """
 returnValue = None
 if dt < 0:
 raise ValueError("Can't schedule an event in the past")
 for action in actions:
 if callable(action):
 action = FunctionAction(action)
 if action in pastActions:
 raise AssertionError('Scheduling an action twice!')
 pastActions[action] = True
 heapq.heappush(self.events, _EventHeapEntry(
 self.time + dt,
 self.currentEventIndex,
 action,
))
 self.currentEventIndex += 1
 if returnValue is None:
 returnValue = action
 return returnValue

pastActions = weakref.WeakKeyDictionary()

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_modules/gillcup/animatedobject.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 		Module code »

 Source code for gillcup.animatedobject

from gillcup.action import EffectAction

class AnimatedObject(object):
[docs] """An objects whose attributes can be animated

 Animated attribute must be instance (not class) attribute in order to
 work.
 Every animated attribute must be assigned a normal value before it can be
 animated. Usually this is done in the constructor.

 Each AnimatedObject needs a timer to animate. This can be either
 through an argument to the animate method, or in an instance attribute.
 The constructor takes a timer value to set the instance attribute to.
 """
 def __init__(self, timer=None):
 super(AnimatedObject, self).__init__()
 self._anim_data_ = {}
 self.timer = timer

 def _animate(self, attribute, animation):
 """Animate the given attribute by the given animation

 animation can be any object with a getValue method; but an Effect
 works best.
 """
 try:
 oldValue = self.__dict__[attribute]
 del self.__dict__[attribute]
 except KeyError:
 old = self._anim_data_[attribute]
 else:
 old = _Constant(oldValue)
 self._anim_data_[attribute] = animation
 return old

 def __getattr__(self, attr):
 try:
 effect = self._anim_data_[attr]
 except KeyError:
 raise AttributeError(attr)
 except RuntimeError:
 # Probably _anim_data_ doesn't exist => infinite recursion
 raise RuntimeError(
 'Runtime error while getting attribute %s. '
 'Likely the base __init__ method was not called'
 % attr
)
 return effect.getValue()

 def _replace_effect(self, attribute, oldEffect, newEffect):
 """ Replace the given effct by a new effect
 """
 try:
 currentEffect = self._anim_data_[attribute]
 except KeyError:
 return False
 else:
 if currentEffect is oldEffect:
 if getattr(newEffect, '_is_constant', False):
 del self._anim_data_[attribute]
 setattr(self, attribute, newEffect.getValue())
 else:
 self._anim_data_[attribute] = newEffect
 return True
 else:
 try:
 replaceMethod = currentEffect._replace_effect_
 except AttributeError:
 return False
 else:
 return replaceMethod(oldEffect, newEffect)

 def _dump_effects(self, indentLevel=0):
 for attr, effect in self._anim_data_.items():
 print ' ' * indentLevel + '.' + attr + ':' + str(getattr(self, attr))
 try:
 dump = effect.dump
 except AttributeError:
 print ' ' * (indentLevel + 1) + str(effect)
 else:
 effect.dump(indentLevel + 1)

 def animate(self, attribute, value, dt=0, timer=None, **options):
[docs] """Animate the given attribute

 Calls self.apply(self.animation(...), dt=dt).
 Returns the resulting Action.
 """
 anim = self.animation(attribute, value, **options)
 return self.apply(anim, dt=dt, timer=timer)

 def animation(self, attribute, value, **options):

[docs] """Return an animation Action for the given attribute.

 When this Action is run, the given attribute will be gradually set
 to the new value. The style of the animation is given by options.

 See :py:func:`gillcup.effect.animation` for what options are available.
 """
 from gillcup.effect import animation
 return animation(self, attribute, value, **options)

 def apply(self, action, dt=0, timer=None):

[docs] """Schedule action on this object's timer

 dt is the time in which the Action is to be executed (measured from the
 timer's current time).
 timer can be given to specify the timer to use; if None, self's timer
 will be used
 """
 timer = timer or self.timer
 return timer.schedule(dt, action)

 def dynamicAttributeSetter(self, attribute, getter):

[docs] """Returns an Action to set an attribute getter

 After the returned Action runs, the given getter function will be used
 to provide values for the given attribute.
 """
 return EffectAction(_GetterObject(getter), self, attribute)

 def setDynamicAttribute(self, attribute, getter, dt=0, timer=None):

[docs] """Set a getter for an attribute

 If dt==0, sets getter as the attribute getter for the given attribute.

 Otherwise, calls
 self.apply(self.dynamicAttributeSetter(attribute, getter), dt=dt).
 """
 from gillcup import effect
 if not dt:
 self._animate(attribute, effect.GetterObject(getter))
 else:
 setter = self.dynamicAttributeSetter(attribute, getter)
 self.apply(setter, dt, timer)

class _Constant(object):

 _is_constant = True
 def __init__(self, value):
 self.value = value

 def getValue(self):
 return self.value

 def dump(self, indentationLevel):
 o = str(self.value)
 print ' ' * indentationLevel + type(self).__name__ + ': ' + o

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_modules/gillcup/action.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 		Module code »

 Source code for gillcup.action

class Action(object):
 """Something that can be scheduled: a discrete event.
[docs]
 Also, other Actions can be chained to it.
 These will be run when the "parent" Action, or an effect applied by it,
 finishes.

 Actions may not be callable. If they are, they won't be scheduled as
 actions.
 """
 def __init__(self):
 self._chain = []
 self.expired = False

 def chain(self, action, *others, **kwargs):
 """Schedule an Action (or more) at the end of this Action
[docs]
 The dt argument can be given to delay the runnin of the execution
 by the specified time.

 For EffectAction, the actions are scheduled after the applied effect
 ends.

 If this action has already finished, the chained ones are scheduled
 immediately.
 """
 if self.expired:
 self.timer.schedule(kwargs.get('dt', 0), action, *others)
 else:
 for act in (action,) + others:
 self._chain.append((kwargs.get('dt', 0), act))
 return action

 def run(self, timer):
 """Run this action.

[docs]
 Called from a Timer.
 """
 if self.expired:
 raise RuntimeError('An Action is being run twice')
 self.expired = True
 self.timer = timer
 for dt, ch in self._chain:
 timer.schedule(dt, ch)

 def delay(self, dt):
 """Schedule a null action at time dt (useful in chaining)

[docs] """
 return self.chain(Action(), dt=dt)

class FunctionAction(Action):
 """An Action that executes a function when run

[docs]
 func is called when this Action is run; args are passed to it

 Additional options:

 - kwargs: a dict of named arguments to pass to the function
 - passTimer: if True, the timer will be passed as an additional named
 argument
 """
 def __init__(self, func, *args, **options):
 Action.__init__(self)
 self.func = func
 self.args = args
 self.kwargs = options.get('kwargs', {})
 self.passTimer = options.get('passTimer', False)

 def run(self, timer):
 if self.passTimer:
 kwargs = dict(timer=timer)
 kwargs.update(self.kwargs)
 else:
 kwargs = self.kwargs
 self.func(*self.args, **kwargs)
 Action.run(self, timer)

class EffectAction(Action):
 """An Action that applies an effect when run

[docs]
 effect is applied when this Action is run; the timer, args and kwargs
 are passed to it.

 args should be the object and attribute to apply the Effect to.
 """

 def __init__(self, effect, *args, **kwargs):
 Action.__init__(self)
 self.effect = effect
 self.args = args
 self.kwargs = kwargs

 def run(self, timer):
 self._chain, chain = [], self._chain
 Action.run(self, timer)
 self.effect.start(timer, *self.args, **self.kwargs)
 for dt, ch in chain:
 self.effect.chain(ch, dt=dt)

class WaitForAll(Action):
 """An Action that waits for other actions, and runs when they all are run

[docs] """
 def __init__(self, *actions):
 Action.__init__(self)
 self.pending_actions = set(actions)
 for action in self.pending_actions:
 action.chain(FunctionAction(self.triggered, action))

 def triggered(self, action):
 self.pending_actions.remove(action)
 if not self.pending_actions:
 self.run(action.timer)

class WaitForAny(Action):
 """An Action that waits for other actions, and runs when any of them is run

[docs] """
 def __init__(self, *actions):
 Action.__init__(self)
 for action in actions:
 action.chain(self.maybeRun)

 def maybeRun(self, timer):
 if not self.expired:
 self.run()

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 All modules for which code is available

		gillcup.action

		gillcup.animatedobject

		gillcup.easing

		gillcup.graphics.helpers

		gillcup.timer

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_modules/gillcup/graphics/helpers.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.1 documentation »

 		Module code »

 Source code for gillcup.graphics.helpers

import operator
import functools
from contextlib import contextmanager

def extend_tuple(args, default=0):
[docs] """Extend the given tuple to a triple, padding by the given value
 """
 try:
 x, y, z = args
 except StandardError:
 try:
 x, y = args
 z = default
 except StandardError:
 try:
 x, = args
 except StandardError:
 x = args
 y = z = default
 return x, y, z

def extend_tuple_copy(args):

[docs] """Extend the given tuple to a triple, copying the last value
 """
 try:
 x, y, z = args
 except StandardError:
 try:
 x, y = args
 z = y
 except StandardError:
 try:
 x, = args
 except StandardError:
 x = args
 y = z = x
 return x, y, z

@contextmanager

def nullContextManager(*args, **kwargs):
[docs] """A context manager that does nothing
 """
 yield

def tuple_multiply(*tuples):

 return tuple(functools.reduce(operator.mul, items) for items in zip(*tuples))

 © Copyright 2010, Petr Viktorin.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 		old

 		latest

_static/down-pressed.png

