

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Gillcup 0.2.1 documentation

Gillcup documentation

This is a technical documentation of the Gillcup library.
For a tutorial and flashy demo, you should look at Gillcup Graphics [http://gillcup-graphics.readthedocs.org/].

Contents:

	Introduction
	Version warning

	The Project

	Module Reference
	gillcup.clock

	gillcup.actions

	gillcup.properties

	gillcup.animation

	gillcup.effect

	gillcup.easing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

Introduction

Gillcup is a 2D animation library.

It is intended for both scripted and interactive animations:
in the former, the entire animation is known ahead of time, and rendered
as fast as possible; the latter is gnerally tied to a system clock, and can be
influenced by user input.

The Gillcup core is only concerned with animations; it’s not tied to
any particular graphics library.
The gillcup_graphics [http://gillcup-graphics.readthedocs.org/] package includes a more accessible demo and a tutorial.

Version warning

This is version 0.2. The API will change significantly in version 0.3.
Please make sure you specify gillcup < 0.3 in your setup/requirements file.

The Project

Gillcup is a MIT-licensed, Github-hosted [https://github.com/encukou/gillcup]
project striving to uphold best practices of the Python craft, from PEP8 [http://www.python.org/dev/peps/pep-0008/] to
semantic versioning [http://semver.org/].
Please report any bugs, style issues and suggestions on the bug tracker [https://github.com/encukou/gillcup/issues]!

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

Module Reference

Gillcup, a Python animation library

Gillcup provides a number of modules:

	gillcup.clock

	gillcup.actions

	gillcup.properties

	gillcup.animation

	gillcup.effect

	gillcup.easing

The most interesting classes of each module are exported directly
from the gillcup package:

	Clock (from gillcup.clock)

	Subclock (from gillcup.clock)

	Action (from gillcup.actions)

	AnimatedProperty (from gillcup.properties)

	TupleProperty (from gillcup.properties)

	Animation (from gillcup.animation)

	Effect (from gillcup.effect)

	ConstantEffect (from gillcup.effect)

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.clock

Gillcup’s Clock Class

In Gillcup, animation means two things: running code at specified times,
and changing object properties with time.

You will notice that the preceding sentence mentions time quite a lot. But
what is this time?

You could determine time by looking at the computer’s clock, but that would
only work with real-time animations. When you’d want to render a movie,
where each frame takes 2 seconds to draw and there are 25 frames per
second, you’d be stuck.
That’s why Gillcup introduces a flexible source of time, the Clock, which
keeps track of time and schedules actions.

Time is measured in “time units”.
What a time unit means is entirely up to the application – it could be
seconds, movie/simulation frames, etc.

	
class gillcup.Clock

	Keeps track of time and schedules events.

Attributes:

	
time

	The current time on the clock. Never assign to it directly;
use advance() instead.

Animated Properties:

	
speed

	Speed of the clock.

When calling update(), the interval is multiplied by this value.

The speed is an AnimatedProperty. When changing, beware that it is only
checked when advance() is called or when a scheduled action is run,
so speed animations will be only approximate.
For better accuracy, call advance()
with small dt, or schedule a periodic dummy action at small inervals.

Basic methods:

	
advance(dt)

	Call to advance the clock’s time

Steps the clock dt units to the future, pausing at times when actions
are scheduled, and running them.

Attempting to move to the past (dt<0) will raise an error.

	
schedule(action, dt=0)

	Schedule an action to be run “dt” time units from the current time

Scheduling is stable: if two things are scheduled for the same
time, they will be called in the order they were scheduled.

Scheduling an action in the past (dt<0) will raise an error.

If the scheduled callable has a “schedule_callback” method, it will
be called with the clock and the time it’s been scheduled at.

Update function registration:

	
schedule_update_function(function)

	Schedule a function to be called every time the clock advances

Then function will be called a lot, so it shouldn’t be very expensive.

Only a weak reference is made to the function, so the caller should
ensure another reference to it is retained as long as it should be
called.

	
unschedule_update_function(function)

	Unschedule a function scheduled by schedule_update_function

	
class gillcup.Subclock(parent, speed=1)

	A Clock that advances in sync with another Clock

A Subclock advances whenever its parent clock does.
Its speed attribute specifies the relative speed relative to the parent
clock. For example, if speed==2, the subclock will run twice as fast as its
parent clock.

Unlike clocks synchronized via actions or update functions, the actions
scheduled on a parent Clock and all subclocks are run in the correct
sequence, with all clocks at the correct times when each action is run.

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.actions

Gillcup Actions

Although arbitrary callables can be scheduled on a Gillcup
Clock, one frequently schedules objects that are specifically
made for this purpose.
Using gillcup.Action allows one to chain actions together in various
ways, allowing the developer to create complex effects.

	
class gillcup.Action(clock=None, dt=0)

	A chainable “event” designed for being scheduled.

As any callable, an Action can be scheduled on a clock, either by
schedule(), or by chaining, or, as a shortcut,
directly from the constructor with the clock and dt arguments.
Each Action may only be scheduled once.

Other actions may be chained to an Action, that is, scheduled to run at
some time after the Action is run.

Some Actions may represent a time interval or process rather than a
discrete point in time. In these cases, chained actions are run after the
interval is over or the process finishes.

Actions may be combined to form larger structures using
helper Action subclasses as building
blocks.
As a shorthand, the following operators are available:

	+ creates a Sequence of actions;
one is run after the other.

	| creates a Parallel construct:
all actions are started at once.

The chain() method and operators can be used with Actions, or regular
callables (which are wrapped in FunctionCaller),
or with numbers (which create corresponding
delays), or with iterables (which get
wrapped in Process), or with None (which coerces
into a no-op Action).

	
chain(action, dt=0)

	Schedule an action to be scheduled after this Action

The action argument may be a callable, number, or None,
and is wrapped by an Action if necessary. See __init__ for more
details.

The dt argument can be given to delay the chained action by the
specified time.

If this Action has already been called, the chained action is scheduled
immediately dt units after the current time.
To prevent or modify this behavior, the caller can check the
chain_triggered attribute.

Returns the chained action.

	
gillcup.Action.chain_triggered

	Set to true when this Action is finished, i.e. its chained actions have
been triggered.

Overridable methods:

	
__call__()

	Run this action.

Subclasses that represent discrete moments in time should call the
superclass implementation when they are finished running.

Subclasses that represent time intervals (there’s a delay between
the moment they are called and when they trigger chained actions)
should call expire() when they are called,
and trigger_chain() when they’re done.

Methods useful for subclasses:

	
expire()

	Marks the Action as run.

Subclasses must call this method at the start of
__call__().

	
trigger_chain()

	Schedule the chained actions.

Subclasses must call this method after the Action runs; see
__call__().

	
classmethod coerce(value)

	Coerce value into an action.

Wraps functions in FunctionCallers, numbers in Delays, and None in a
no-op.

Building blocks for complex actions

	
class gillcup.actions.FunctionCaller(function, *args, **kwargs)[source]

	An Action that calls given function, passing args and kwargs to it

function can be any callable.

	
class gillcup.actions.Delay(time, **kwargs)[source]

	An Action that triggers chained actions after a given delay

The kwargs are passed to gillcup.Action‘s initializer.

	
class gillcup.actions.Sequence(*actions, **kwargs)[source]

	An Action that runs a series of Actions one after the other

Actions chained to a Sequence are triggered after the last Action in the
sequence.

The kwargs are passed to gillcup.Action‘s initializer.

	
class gillcup.actions.Parallel(*actions, **kwargs)[source]

	Starts the given Actions, and triggers chained ones after all are done

That is, after all the given actions have triggered their chained actions,
Parallel triggers its own chained actions.

The kwargs are passed to gillcup.Action‘s initializer.

	
class gillcup.actions.Process(iterable, **kwargs)[source]

	Wraps the given iterable

When triggered, takes an item from the iterable and schedules it, then
chains the scheduling of the next item, and so on.
When the underlying iterator is exhausted, chained actions are run.

The items in the underlying iterable can be callables, numbers or other
iterables, as for Action‘s + and |
operators.

The kwargs are passed to gillcup.Action‘s initializer.

See process_generator() for a simple way to create Processes.

	
gillcup.actions.process_generator(func)[source]

	Decorator for creating Processes

Used as a decorator on a generator function, it allows writing in a
declarative style instead of callbacks, with yield statements for
“asynchronousness”.

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.properties

Gillcup’s Animated Properties

To animate Python objects, we need to change values of their attributes over
time.
There are two kinds of changes we can make: discrete and continuous.
A discrete change happens at a single point in time: for example, an object
is shown, some output is written, a sound starts playing.
Actions are used for effecting
discrete changes.

Continuous changes happen over a period of time: an object smoothly moves
to the left, or a sound fades out.
These changes are made by animating special properties on objects,
using Animation classes on so-called
animated properties.

Under the hood, Gillcup uses Python’s descriptor interface [http://docs.python.org/howto/descriptor.html] to provide efficient
animated properties.

Assigment to an animated attribute causes the property to get set to the given
value and cancels any running animations on it.

	
class gillcup.AnimatedProperty(default, docstring=None)

	A scalar animated property

The idiomatic way to define animated properties is as follows:

class Tone(object):
 pitch = AnimatedProperty(440)
 volume = AnimatedProperty(0)

Now, Tone instances will have pitch and volume set to the corresponding
defaults, and can be animated.

The docstring argument becomes the property’s __doc__ attribute.

	
adjust_value(values)

	Convert an animation’s *args values into a property value

For scalar properties, this converts a 1-tuple into its only element

	
tween_values(function, parent_value, value)

	Call a scalar tween function on two values.

	
class gillcup.TupleProperty(*default, **kwargs)

	A tuple animated property

Iterating the TupleProperty itself yields sub-properties that can be
animated individually.
The intended idiom for declaring a tuple property is:

x, y, z = position = TupleProperty(0, 0, 0)

	
adjust_value(value)

	Convert an animation’s *args values into a property value

For tuple properties, return the tuple unchanged

	
tween_values(function, parent_value, value)

	Call a scalar tween function on two values.

Calls the function on corresponding pairs of elements, returns
the tuple of results

	
class gillcup.properties.ScaleProperty(num_dimensions, **kwargs)[source]

	A TupleProperty used for scales or sizes in multiple dimensions

It acts as a regular TupleProperty, but supports scalars or short tuples in
assignment or animation.

Instead of a default value, __init__ takes the number of dimensions;
the default value will be (1,) * num_dimensions.

If a scalar, or a tuple with only one element, is given, the value is
repeated across all dimensions.
If another short tuple is given, the remaining dimensions are set to 1.

For example, given:

width, height, length = size = ScaleProperty(3)

the following pairs are equivalent:

obj.size = 2
obj.size = 2, 2, 2

obj.size = 2, 3
obj.size = 2, 3, 1

obj.size = 2,
obj.size = 2, 2, 2

Similarly, Animation(obj, 'size', 2) is equivalent to
Animation(obj, 'size', 2, 2, 2).

	
adjust_value(value)[source]

	Expand the given tuple or scalar to a tuple of len=num_dimensions

	
class gillcup.properties.VectorProperty(num_dimensions, **kwargs)[source]

	A TupleProperty used for vectors

It acts as a regular TupleProperty, but supports short tuples in
assignment or animation by setting all remaining dimensions to 0.

Instead of a default value, __init__ takes the number of dimensions;
the default value will be (0,) * num_dimensions.

For example, given:

x, y, z = position = VectorProperty(3)

the following pairs are equivalent:

obj.position = 2, 3
obj.position = 2, 3, 0

obj.position = 2,
obj.position = 2, 0, 0

Similarly, Animation(obj, 'position', 1, 2) is equivalent to
Animation(obj, 'position', 1, 2, 0).

	
adjust_value(value)[source]

	Expand the given tuple to the correct number of dimensions

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.animation

Gillcup’s Animation classes

Animations are Actions that modify
animated properties.
To use one, create it and schedule it on a Clock.
Once an animation is in effect, it will smoothly change a property’s value
over a specified time interval.

The value is computed as a tween between the property’s original value and
the Animation’s target value.
The tween parameters can be set by the timing and easing keyword
arguments.

The “original value” of a property is not fixed: it is whatever the
value would have been if this animation wasn’t applied (in other words,
it’s determined by the effect that was originally on the
property).
Also, if you set the dynamic argument to Animation, the animation’s
target becomes an AnimatedProperty.
Animating these allows one to create very complex effects in a modular way.

	
class gillcup.Animation(instance, property_name, *target, **kwargs)

	An object that modifies an AnimatedProperty based on Clock time

Positional init arguments:

	Parameters:	
	instance – The object whose property is animated

	property_name – Name of the animated property

	target – Value at which the animation should arrive (tuple properties
accept more arguments, i.e. Animation(obj, 'position', 1, 2, 3))

Keyword init arguments:

	Parameters:	
	time – The duration of the animation

	delay – Delay between the time the animation is scheduled and its actual start

	timing – A function that maps global time to animation’s time.

Possible values:

	None: normalizes time so that 0 corresponds to the start of the
animation, and 1 to the end (i.e. start + time); clamps to [0, 1]

	'infinite': same as above, but doesn’t clamp: the animation
goes forever on (in both directions; it only starts to take effect
when it’s scheduled, but a delay can cause negative local times).
The animation’s time is normalized to 0 at the start and
1 at start + time.

	'absolute': the animation is infinite, with the same speed as
with the ‘infinite’ option, but zero corresponds to the clock’s
zero.
Useful for synchronized periodic animations.

	function(time, start, duration): apply a custom function

	easing – An easing function to use. Can be either a one-argument
function, or a dotted name which is looked up in the
gillcup.easing module.

	dynamic – If true, the target atribute becomes an AnimatedProperty, allowing
for more complex animations.

Note

In order to conserve resources, ordinary Animations are released
(replaced by a simple ConstantEffect) when
they are “done”.
Arguments such as timing, or the
Add or Multiply
animation subclasses, which allow the value to be modified after the
time elapses, turn this behavior off by setting the dynamic
attibute to true.

When subclassing Animation, remember to do the same if your subclass
needs to change its value after time elapses.
This includes cases where the value depends on the value of the
previous (parent) animation.

	
class gillcup.animation.Add(instance, property_name, *target, **kwargs)[source]

	An additive animation: the target value is added to the original

	
class gillcup.animation.Multiply(instance, property_name, *target, **kwargs)[source]

	A multiplicative animation: target value is multiplied to the original

	
class gillcup.animation.Computed(instance, property_name, func, **kwargs)[source]

	A custom-valued animation: the target is computed by a function

Pass a func keyword argument with the function to the constructor.

The function will get one argument: the time elapsed, normalized by the
animation’s timing function.

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.effect

Effect base & helper classes

The Effect is the base class that modify an AnimatedProperty.
Animation is Effect’s most important subclass.

Each Effect can be applied to one or more properties on one or more objects.
The value of these properties is then provided by the Effect’s value
property.

	
class gillcup.Effect

	Object that changes an AnimatedProperty

Effects should have a value attribute that provides a value for the
property.

	
get_replacement()

	Return an equivalent effect

When it’s sure that the effect’s value won’t change any more, this
method can return a ConstantEffect to free resources.

	
apply_to(instance, property_name)

	Apply this effect to an instance‘s AnimatedProperty

	
class gillcup.ConstantEffect(value)

	An Effect that provides a constant value

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Gillcup 0.2.1 documentation

 	Module Reference

gillcup.easing

The easing module defines a number of functions usable in
gillcup.Animation.

The functions are partly based on Robert Penner’s Motion, Tweening, and Easing [http://robertpenner.com/easing/], and on Qt’s QEasingCurve [http://developer.qt.nokia.com/doc/qt-4.8/qeasingcurve.html].
See their pages for more background.

Each of the functions defined here can be used directly for an
“ease in” animation (one that speeds up over time).
For other types, use attributes: out (slows down over time), in_out
(speeds up, then slows down), and out_in (slows down, then speeds up).
The ease-in is also available in in_. For example,
gillcup.easing.quadratic.in_out is a nice natural-looking tween.

Polynomial easing functions

	
gillcup.easing.linear(t)[source]

	Linear interpolation

t → t

	
gillcup.easing.quadratic(t)[source]

	Quadratic easing

t → t**2

	
gillcup.easing.cubic(t)[source]

	Cubic easing

t → t**3

	
gillcup.easing.quartic(t)[source]

	Quartic easing

t → t**4

	
gillcup.easing.quintic(t)[source]

	Quintic easing

t → t**5

Other simple easing functions

	
gillcup.easing.sine(t)[source]

	Sinusoidal easing

Quarter of a cosine wave

	
gillcup.easing.exponential(t)[source]

	Exponential easing

	
gillcup.easing.circular(t)[source]

	Circular easing

Easing factories

	
gillcup.easing.elastic(period, amplitude=1)[source]

	Elastic easing factory

	
gillcup.easing.overshoot(amount)[source]

	Overshoot easing factory

	
gillcup.easing.bounce(amplitude)[source]

	Bounce easing factory

Helpers for creating new easing functions

	
gillcup.easing.easefunc(func)[source]

	Decorator for easing functions.

Adds the in_, out, in_out and out_in attributes to
an easing function.

	
gillcup.easing.normalized(func)[source]

	Decorator that normalizes an easing function

Normalizing is done so that func(0) == 0 and func(1) == 1.

Graph

For some visual reference, here are the graphs of the various functions in
this module.

[image: ../_images/easings.png]
The graph can be generated by running this module directly (i.e.
by python -m gillcup.easing). If a command-line argument is given, the
graph will be saved to the given file, otherwise it will be displayed.
You’ll need to install matplotlib [http://matplotlib.sourceforge.net/] to
create the graph.

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Gillcup 0.2.1 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 gillcup	

 	
 	
 gillcup.actions	

 	
 	
 gillcup.animation	

 	
 	
 gillcup.clock	

 	
 	
 gillcup.easing	

 	
 	
 gillcup.effect	

 	
 	
 gillcup.properties	

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Gillcup 0.2.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | Q
 | S
 | T
 | U
 | V

_

 	

 	__call__() (gillcup.Action method)

A

 	

 	Action (class in gillcup)

 	Add (class in gillcup.animation)

 	adjust_value() (gillcup.AnimatedProperty method)

 	

 	(gillcup.TupleProperty method)

 	(gillcup.properties.ScaleProperty method)

 	(gillcup.properties.VectorProperty method)

 	advance() (gillcup.Clock method)

 	

 	AnimatedProperty (class in gillcup)

 	Animation (class in gillcup)

 	apply_to() (gillcup.Effect method)

B

 	

 	bounce() (in module gillcup.easing)

C

 	

 	chain() (gillcup.Action method)

 	chain_triggered (gillcup.actions.Action.gillcup.Action attribute)

 	circular() (in module gillcup.easing)

 	Clock (class in gillcup)

 	

 	coerce() (gillcup.Action class method)

 	Computed (class in gillcup.animation)

 	ConstantEffect (class in gillcup)

 	cubic() (in module gillcup.easing)

D

 	

 	Delay (class in gillcup.actions)

E

 	

 	easefunc() (in module gillcup.easing)

 	Effect (class in gillcup)

 	elastic() (in module gillcup.easing)

 	

 	expire() (gillcup.Action method)

 	exponential() (in module gillcup.easing)

F

 	

 	FunctionCaller (class in gillcup.actions)

G

 	

 	get_replacement() (gillcup.Effect method)

 	gillcup (module)

 	gillcup.actions (module)

 	gillcup.animation (module)

 	

 	gillcup.clock (module)

 	gillcup.easing (module)

 	gillcup.effect (module)

 	gillcup.properties (module)

L

 	

 	linear() (in module gillcup.easing)

M

 	

 	Multiply (class in gillcup.animation)

N

 	

 	normalized() (in module gillcup.easing)

O

 	

 	overshoot() (in module gillcup.easing)

P

 	

 	Parallel (class in gillcup.actions)

 	Process (class in gillcup.actions)

 	

 	process_generator() (in module gillcup.actions)

Q

 	

 	quadratic() (in module gillcup.easing)

 	quartic() (in module gillcup.easing)

 	

 	quintic() (in module gillcup.easing)

S

 	

 	ScaleProperty (class in gillcup.properties)

 	schedule() (gillcup.Clock method)

 	schedule_update_function() (gillcup.Clock method)

 	Sequence (class in gillcup.actions)

 	

 	sine() (in module gillcup.easing)

 	speed (gillcup.Clock attribute)

 	Subclock (class in gillcup)

T

 	

 	time (gillcup.clock.Clock attribute)

 	trigger_chain() (gillcup.Action method)

 	

 	TupleProperty (class in gillcup)

 	tween_values() (gillcup.AnimatedProperty method)

 	

 	(gillcup.TupleProperty method)

U

 	

 	unschedule_update_function() (gillcup.Clock method)

V

 	

 	VectorProperty (class in gillcup.properties)

 Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

_modules/gillcup/actions.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 		gillcup »

 Source code for gillcup.actions

Encoding: UTF-8

"""Gillcup Actions

Although arbitrary callables can be scheduled on a Gillcup
:class:`~gillcup.Clock`, one frequently schedules objects that are specifically
made for this purpose.
Using :class:`gillcup.Action` allows one to chain actions together in various
ways, allowing the developer to create complex effects.
"""

from __future__ import unicode_literals, division, print_function

import numbers
import functools

from six import callable # pylint: disable=W0622

class Action(object):
 """A chainable “event” designed for being scheduled.

 As any callable, an Action can be scheduled on a clock, either by
 :meth:`~gillcup.Clock.schedule()`, or by chaining, or, as a shortcut,
 directly from the constructor with the `clock` and `dt` arguments.
 Each Action may only be scheduled *once*.

 Other actions may be chained to an Action, that is, scheduled to run at
 some time after the Action is run.

 Some Actions may represent a time interval or process rather than a
 discrete point in time. In these cases, chained actions are run after the
 interval is over or the process finishes.

 Actions may be combined to form larger structures using
 :ref:`helper Action subclasses <action-building-blocks>` as building
 blocks.
 As a shorthand, the following operators are available:

 * ``+`` creates a :class:`~gillcup.actions.Sequence` of actions;
 one is run after the other.
 * ``|`` creates a :class:`~gillcup.actions.Parallel` construct:
 all actions are started at once.

 The ``chain()`` method and operators can be used with Actions, or regular
 callables (which are wrapped in :class:`~gillcup.actions.FunctionCaller`),
 or with numbers (which create corresponding
 :class:`delays <gillcup.actions.Delay>`), or with iterables (which get
 wrapped in :class:`~gillcup.actions.Process`), or with None (which coerces
 into a no-op Action).
 """
 # The states an Animation goes through are:
 # - unscheduled (self.clock is unset)
 # - scheduled
 # - in progress (self.expired == True)
 # - done (self.chain_triggered == True)
 scheduled_time = None

 def __init__(self, clock=None, dt=0):
 super(Action, self).__init__()

 # Set to True once the Action runs
 self.expired = False

 # Set to True once chained actions are scheduled
 self.chain_triggered = False

 # The chained actions
 self._chain = []

 # The clock
 self.clock = None
 if clock:
 clock.schedule(self, dt)
 elif dt != 0:
 # We're not scheduling yet, so dt would be ignored
 raise ValueError('dt specified without a clock')

 def chain(self, action, dt=0):
 """Schedule an action to be scheduled after this Action

 The ``action`` argument may be a callable, number, or None,
 and is wrapped by an Action if necessary. See ``__init__`` for more
 details.

 The ``dt`` argument can be given to delay the chained action by the
 specified time.

 If this Action has already been called, the chained action is scheduled
 immediately `dt` units after the current time.
 To prevent or modify this behavior, the caller can check the
 :attr:`~gillcup.Action.chain_triggered` attribute.

 Returns the chained action.
 """
 action = self.coerce(action)
 return self.chain_callable(action, dt=dt)

 def chain_callable(self, action, dt=0):
 """Chain an arbitrary callable to be scheduled after this Action

 This is the same as ``chain()``, except the argument is not coerced.
 """
 if self.chain_triggered:
 self.clock.schedule(action, dt)
 else:
 self._chain.append((action, dt))
 return action

 @classmethod
 def coerce(cls, value):
 """Coerce value into an action.

 Wraps functions in FunctionCallers, numbers in Delays, and None in a
 no-op.
 """
 if isinstance(value, Action):
 return value
 elif value is None:
 return Action()
 elif callable(value):
 return FunctionCaller(value)
 elif isinstance(value, numbers.Real):
 return Delay(value)
 else:
 try:
 iterator = iter(value)
 except TypeError:
 raise ValueError("%s can't be coerced into Action" % value)
 else:
 return Process(iterator)

 def __call__(self):
 """Run this action.

 Subclasses that represent discrete moments in time should call the
 superclass implementation when they are finished running.

 Subclasses that represent time intervals (there's a delay between
 the moment they are called and when they trigger chained actions)
 should call :meth:`~gillcup.Action.expire` when they are called,
 and :meth:`~gillcup.Action.trigger_chain` when they're done.
 """
 self.expire()
 self.trigger_chain()

 def expire(self):
 """Marks the Action as run.

 Subclasses must call this method at the start of
 :meth:`~gillcup.Action.__call__`.
 """
 if self.expired:
 raise RuntimeError('%s was run twice' % self)
 self.expired = True

 def trigger_chain(self):
 """Schedule the chained actions.

 Subclasses must call this method after the Action runs; see
 :meth:`~gillcup.Action.__call__`.
 """
 self.chain_triggered = True
 for dt, chained in self._chain:
 self.clock.schedule(dt, chained)
 self._chain = []

 def schedule_callback(self, clock, time):
 """Called from a clock when this Action is scheduled"""
 if self.clock:
 raise RuntimeError('%s was scheduled twice' % self)
 self.clock = clock
 self.scheduled_time = time

 def __add__(self, other):
 try:
 other = self.coerce(other)
 except ValueError:
 return NotImplemented
 return Sequence(self, other)

 def __radd__(self, other):
 try:
 other = self.coerce(other)
 except ValueError:
 return NotImplemented
 return Sequence(other, self)

 def __or__(self, other):
 try:
 other = self.coerce(other)
 except ValueError:
 return NotImplemented
 return Parallel(self, other)

 def __ror__(self, other):
 try:
 other = self.coerce(other)
 except ValueError:
 return NotImplemented
 return Parallel(other, self)

class ManualAction(Action):
 """An action doesn't end until trigger_chain is called manually
 """
 def __call__(self):
 self.expire()

[docs]class FunctionCaller(Action):
 """An Action that calls given `function`, passing `args` and `kwargs` to it

 `function` can be any callable.
 """
 def __init__(self, function, *args, **kwargs):
 super(FunctionCaller, self).__init__()
 self.function = function
 self.args = args
 self.kwargs = kwargs

 def __call__(self):
 self.function(*self.args, **self.kwargs)
 super(FunctionCaller, self).__call__()

[docs]class Delay(Action):
 """An Action that triggers chained actions after a given delay

 The `kwargs` are passed to :class:`gillcup.Action`'s initializer.
 """
 def __init__(self, time, **kwargs):
 super(Delay, self).__init__(**kwargs)
 self.time = time

 def __call__(self):
 self.expire()
 self.clock.schedule(self.trigger_chain, self.time)

[docs]class Sequence(Action):
 """An Action that runs a series of Actions one after the other

 Actions chained to a Sequence are triggered after the last Action in the
 sequence.

 The `kwargs` are passed to :class:`gillcup.Action`'s initializer.
 """
 def __init__(self, *actions, **kwargs):
 super(Sequence, self).__init__(**kwargs)
 self.remaining_actions = list(actions)
 self.remaining_actions.reverse()

 def __call__(self):
 self.expire()
 self._call_next()

 def _call_next(self):
 try:
 action = self.remaining_actions.pop()
 except IndexError:
 self.trigger_chain()
 else:
 action.chain(self._call_next)
 self.clock.schedule(action)

 # XXX: Overload __add__, __radd__?

[docs]class Parallel(Action):
 """Starts the given Actions, and triggers chained ones after all are done

 That is, after all the given actions have triggered their chained actions,
 Parallel triggers its own chained actions.

 The `kwargs` are passed to :class:`gillcup.Action`'s initializer.
 """
 def __init__(self, *actions, **kwargs):
 self.remaining_actions = actions
 super(Parallel, self).__init__(**kwargs)

 def __call__(self):
 self.expire()
 for action in self.remaining_actions:
 def _triggered(action=action):
 self._triggered(action)
 action.chain(_triggered)
 self.clock.schedule(action)
 self.remaining_actions = set(self.remaining_actions)

 def _triggered(self, action):
 self.remaining_actions.remove(action)
 if not self.remaining_actions:
 self.trigger_chain()

 # XXX: Overload __or__, __ror__?

[docs]class Process(Action):
 """Wraps the given iterable

 When triggered, takes an item from the iterable and schedules it, then
 chains the scheduling of the next item, and so on.
 When the underlying iterator is exhausted, chained actions are run.

 The items in the underlying iterable can be callables, numbers or other
 iterables, as for :class:`~gillcup.actions.Action`'s ``+`` and ``|``
 operators.

 The `kwargs` are passed to :class:`gillcup.Action`'s initializer.

 See :func:`process_generator` for a simple way to create Processes.
 """
 def __init__(self, iterable, **kwargs):
 self.iterator = iter(iterable)
 self.next_action = None
 super(Process, self).__init__(**kwargs)

 def __call__(self):
 self.expire()
 self.do_next()

 def do_next(self):
 """Schedule the next thing from the iterable"""
 try:
 try:
 send = self.iterator.send
 except AttributeError:
 value = next(self.iterator)
 else:
 value = send(self.next_action)
 except StopIteration:
 self.trigger_chain()
 else:
 action = self.next_action = self.coerce(value)
 action.chain(self.do_next)
 self.clock.schedule(action)

[docs]def process_generator(func):
 """Decorator for creating :class:`~gillcup.actions.Process`\\ es

 Used as a decorator on a generator function, it allows writing in a
 declarative style instead of callbacks, with ``yield`` statements for
 "asynchronousness".
 """
 @functools.wraps(func)
 def _f(*args, **kwargs):
 return Process(func(*args, **kwargs))
 return _f

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_modules/gillcup/properties.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 		gillcup »

 Source code for gillcup.properties

Encoding: UTF-8
"""Gillcup's Animated Properties

To animate Python objects, we need to change values of their attributes over
time.
There are two kinds of changes we can make: *discrete* and *continuous*.
A discrete change happens at a single point in time: for example, an object
is shown, some output is written, a sound starts playing.
:mod:`Actions <gillcup.actions>` are used for effecting
discrete changes.

Continuous changes happen over a period of time: an object smoothly moves
to the left, or a sound fades out.
These changes are made by animating special properties on objects,
using :mod:`Animation <gillcup.animation>` classes on so-called
:mod:`animated properties <gillcup.properties>`.

Under the hood, Gillcup uses Python's `descriptor interface
<http://docs.python.org/howto/descriptor.html>`_ to provide efficient
animated properties.

Assigment to an animated attribute causes the property to get set to the given
value and cancels any running animations on it.
"""

from __future__ import unicode_literals, division, print_function

from gillcup.effect import Effect, ConstantEffect

class AnimatedProperty(object):
 """A scalar animated property

 The idiomatic way to define animated properties is as follows::

 class Tone(object):
 pitch = AnimatedProperty(440)
 volume = AnimatedProperty(0)

 Now, Tone instances will have `pitch` and `volume` set to the corresponding
 defaults, and can be animated.

 The **docstring** argument becomes the property's ``__doc__`` attribute.
 """
 def __init__(self, default, docstring=None):
 self.default = default
 if docstring:
 self.__doc__ = docstring

 def adjust_value(self, values):
 """Convert an animation's ``*args`` values into a property value

 For scalar properties, this converts a 1-tuple into its only element
 """
 [value] = values
 return value

 def get_target_property(self):
 """Return a property used for a dynamic animation's target
 """
 # Since AnimatedProperty doesn't care about its name, we can just
 # reuse it
 return self

 def __get__(self, instance, owner):
 if instance:
 return self.get_effect(instance).value
 else:
 return self

 def __set__(self, instance, value):
 self.animate(instance, ConstantEffect(value))
 self.do_replacements(instance)

 def __delete__(self, instance):
 self.animate(instance, ConstantEffect(self.default))
 self.do_replacements(instance)

 def get_effect(self, instance):
 """Get the current effect; possibly create a default one beforehand"""
 # pylint: disable=W0212
 try:
 effects = instance.__gillcup_effects
 except AttributeError:
 effects = instance.__gillcup_effects = {}
 try:
 effect = effects[self]
 except KeyError:
 effect = effects[self] = ConstantEffect(self.default)
 return effect

 def animate(self, instance, animation):
 """Set a new effect on this property; return the old one"""
 # pylint: disable=W0212
 parent = self.get_effect(instance)
 instance.__gillcup_effects[self] = animation
 return parent.get_replacement()

 def do_replacements(self, instance):
 """Possibly replace current effect w/ a more lightweight equivalent"""
 # pylint: disable=W0212
 try:
 effects = instance.__gillcup_effects
 current_effect = effects[self]
 except (AttributeError, KeyError):
 pass
 else:
 effects[self] = current_effect.get_replacement()

 def tween_values(self, function, parent_value, value):
 """Call a scalar tween function on two values.
 """
 return function(parent_value, value)

class TupleProperty(AnimatedProperty):
 """A tuple animated property

 Iterating the TupleProperty itself yields sub-properties that can be
 animated individually.
 The intended idiom for declaring a tuple property is::

 x, y, z = position = TupleProperty(0, 0, 0)
 """
 def __init__(self, *default, **kwargs):
 super(TupleProperty, self).__init__(default, **kwargs)
 self.size = len(default)
 self.subproperties = [
 _TupleElementProperty(self, i) for i in range(self.size)]

 def adjust_value(self, value):
 """Convert an animation's ``*args`` values into a property value

 For tuple properties, return the tuple unchanged
 """
 return value

 def __set__(self, instance, value):
 self.animate(instance, ConstantEffect(self.adjust_value(value)))

 def __iter__(self):
 return iter(self.subproperties)

 def tween_values(self, function, parent_value, value):
 """Call a scalar tween function on two values.

 Calls the function on corresponding pairs of elements, returns
 the tuple of results
 """
 return tuple(map(function, parent_value, value))

class _TupleElementProperty(AnimatedProperty):
 """Animated property for one element of a TupleProperty
 """
 def __init__(self, parent, index):
 super(_TupleElementProperty, self).__init__(parent.default[index])
 self.parent = parent
 self.index = index

 def get_effect(self, instance):
 parent_effect = self.parent.get_effect(instance)
 return _TupleExtractEffect(parent_effect, self.index)

 def animate(self, instance, animation):
 tuple_effect = _TupleMakeEffect(animation, self.index)
 parent = self.parent.animate(instance, tuple_effect)
 tuple_effect.parent = parent
 return _TupleExtractEffect(parent, self.index)

 def do_replacements(self, instance):
 self.parent.do_replacements(instance)

class _TupleExtractEffect(Effect):
 """Effect that extracts one element of a tuple
 """
 def __init__(self, parent, index):
 super(_TupleExtractEffect, self).__init__()
 self.parent = parent
 self.index = index

 @property
 def value(self):
 """Value to be used for the property this effect is on"""
 return self.parent.value[self.index]

 def get_replacement(self):
 self.parent = self.parent.get_replacement()
 if (isinstance(self.parent, _TupleMakeEffect) and
 self.parent.index == self.index):
 return self.parent.element_effect
 elif isinstance(self.parent, ConstantEffect):
 return ConstantEffect(self.value)
 else:
 return self

class _TupleMakeEffect(Effect):
 """Effect that recombines one changed element of a tuple with the rest

 `element_effect` is an Effect whose `value` is used for the changed element

 The `parent` attribute has the Effect with the original, full tuple.
 This attribute must be set after instantiation.
 """
 element_effect = parent = None

 def __init__(self, element_effect, index):
 super(_TupleMakeEffect, self).__init__()
 self.element_effect = element_effect
 self.index = index

 @property
 def value(self):
 """Value to be used for the property this effect is on"""
 element_effect = self.element_effect
 return tuple(
 element_effect.value if i == self.index else val
 for i, val in enumerate(self.parent.value))

 def get_replacement(self):
 self.parent = self.parent.get_replacement()
 self.element_effect = self.element_effect.get_replacement()
 if (isinstance(self.parent, _TupleMakeEffect) and
 self.parent.index == self.index):
 self.parent = self.parent.parent
 return self.get_replacement()
 elif (isinstance(self.parent, ConstantEffect) and
 isinstance(self.element_effect, ConstantEffect)):
 return ConstantEffect(self.value)
 else:
 return self

[docs]class ScaleProperty(TupleProperty):
 """A TupleProperty used for scales or sizes in multiple dimensions

 It acts as a regular TupleProperty, but supports scalars or short tuples in
 assignment or animation.

 Instead of a default value, __init__ takes the number of dimensions;
 the default value will be ``(1,) * num_dimensions``.

 If a scalar, or a tuple with only one element, is given, the value is
 repeated across all dimensions.
 If another short tuple is given, the remaining dimensions are set to 1.

 For example, given::

 width, height, length = size = ScaleProperty(3)

 the following pairs are equivalent::

 obj.size = 2
 obj.size = 2, 2, 2

 obj.size = 2, 3
 obj.size = 2, 3, 1

 obj.size = 2,
 obj.size = 2, 2, 2

 Similarly, ``Animation(obj, 'size', 2)`` is equivalent to
 ``Animation(obj, 'size', 2, 2, 2)``.
 """
 def __init__(self, num_dimensions, **kwargs):
 super(ScaleProperty, self).__init__(*(1,) * num_dimensions, **kwargs)

[docs] def adjust_value(self, value):
 """Expand the given tuple or scalar to a tuple of len=num_dimensions
 """
 try:
 size = len(value)
 except TypeError:
 return (value,) * self.size
 if size == self.size:
 return value
 elif size == 1:
 return value * self.size
 elif size < self.size:
 return value + (1,) * (self.size - size)
 else:
 raise ValueError('Too many dimensions for ScaleProperty')

[docs]class VectorProperty(TupleProperty):
 """A TupleProperty used for vectors

 It acts as a regular TupleProperty, but supports short tuples in
 assignment or animation by setting all remaining dimensions to 0.

 Instead of a default value, __init__ takes the number of dimensions;
 the default value will be ``(0,) * num_dimensions``.

 For example, given::

 x, y, z = position = VectorProperty(3)

 the following pairs are equivalent::

 obj.position = 2, 3
 obj.position = 2, 3, 0

 obj.position = 2,
 obj.position = 2, 0, 0

 Similarly, ``Animation(obj, 'position', 1, 2)`` is equivalent to
 ``Animation(obj, 'position', 1, 2, 0)``.
 """
 def __init__(self, num_dimensions, **kwargs):
 super(VectorProperty, self).__init__(*(0,) * num_dimensions, **kwargs)

[docs] def adjust_value(self, value):
 """Expand the given tuple to the correct number of dimensions
 """
 size = len(value)
 if size == self.size:
 return value
 elif size < self.size:
 return value + (0,) * (self.size - size)
 else:
 raise ValueError('Too many dimensions for VectorProperty')

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 All modules for which code is available

		gillcup

		gillcup.actions

		gillcup.animation

		gillcup.clock

		gillcup.easing

		gillcup.properties

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_modules/gillcup.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 Source code for gillcup

"""Gillcup, a Python animation library

Gillcup provides a number of modules:

.. toctree::
 :maxdepth: 1

 clock
 actions
 properties
 animation
 effect
 easing

The most interesting classes of each module are exported directly
from the gillcup package:

* :class:`~gillcup.Clock` (from :mod:`gillcup.clock`)
* :class:`~gillcup.Subclock` (from :mod:`gillcup.clock`)
* :class:`~gillcup.Action` (from :mod:`gillcup.actions`)
* :class:`~gillcup.AnimatedProperty` (from :mod:`gillcup.properties`)
* :class:`~gillcup.TupleProperty` (from :mod:`gillcup.properties`)
* :class:`~gillcup.Animation` (from :mod:`gillcup.animation`)
* :class:`~gillcup.Effect` (from :mod:`gillcup.effect`)
* :class:`~gillcup.ConstantEffect` (from :mod:`gillcup.effect`)
"""

__version__ = '0.2.1'
__version_info__ = (0, 2, 1)

from gillcup.clock import Clock, Subclock
from gillcup.actions import Action
from gillcup.properties import AnimatedProperty, TupleProperty
from gillcup.animation import Animation
from gillcup.effect import Effect, ConstantEffect

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_modules/gillcup/animation.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 		gillcup »

 Source code for gillcup.animation

Encoding: UTF-8
"""Gillcup's Animation classes

Animations are :mod:`Actions <gillcup.actions>` that modify
:mod:`animated properties <gillcup.properties>`.
To use one, create it and schedule it on a Clock.
Once an animation is in effect, it will smoothly change a property's value
over a specified time interval.

The value is computed as a tween between the property's original value and
the Animation's **target** value.
The tween parameters can be set by the **timing** and **easing** keyword
arguments.

The “original value” of a property is not fixed: it is whatever the
value would have been if this animation wasn't applied (in other words,
it's determined by the :mod:`~gillcup.effect` that was originally on the
property).
Also, if you set the **dynamic** argument to Animation, the animation's
target becomes an :class:`~gillcup.AnimatedProperty`.
Animating these allows one to create very complex effects in a modular way.
"""

from __future__ import unicode_literals, division, print_function

from six import string_types

from gillcup.actions import Action
from gillcup.effect import Effect, ConstantEffect
from gillcup.properties import AnimatedProperty
from gillcup import easing as easing_module

class Animation(Effect, Action):
 """An object that modifies an AnimatedProperty based on Clock time

 Positional init arguments:

 :argument instance:

 The object whose property is animated

 :argument property_name:

 Name of the animated property

 :argument target:

 Value at which the animation should arrive (tuple properties
 accept more arguments, i.e. ``Animation(obj, 'position', 1, 2, 3)``)

 Keyword init arguments:

 :argument time:

 The duration of the animation

 :argument delay:

 Delay between the time the animation is scheduled and its actual start

 :argument timing:

 A function that maps global time to animation's time.

 Possible values:

 * ``None``: normalizes time so that 0 corresponds to the start of the
 animation, and 1 to the end (i.e. start + `time`); clamps to [0, 1]
 * ``'infinite'``: same as above, but doesn't clamp: the animation
 goes forever on (in both directions; it only starts to take effect
 when it's scheduled, but a `delay` can cause negative local times).
 The animation's time is normalized to 0 at the start and
 1 at start + `time`.
 * ``'absolute'``: the animation is infinite, with the same speed as
 with the 'infinite' option, but zero corresponds to the clock's
 zero.
 Useful for synchronized periodic animations.
 * `function(time, start, duration)`: apply a custom function

 :argument easing:

 An easing function to use. Can be either a one-argument
 function, or a dotted name which is looked up in the
 :mod:`gillcup.easing` module.

 :argument dynamic:

 If true, the **target** atribute becomes an AnimatedProperty, allowing
 for more complex animations.

 .. note::

 In order to conserve resources, ordinary Animations are released
 (replaced by a simple :class:`~gillcup.ConstantEffect`) when
 they are “done”.
 Arguments such as ``timing``, or the
 :class:`~gillcup.animation.Add` or :class:`~gillcup.animation.Multiply`
 animation subclasses, which allow the value to be modified after the
 ``time`` elapses, turn this behavior off by setting the ``dynamic``
 attibute to true.

 When subclassing Animation, remember to do the same if your subclass
 needs to change its value after ``time`` elapses.
 This includes cases where the value depends on the value of the
 previous (parent) animation.
 """
 dynamic = False

 start_time = None
 parent = None
 strength = 1

 def __init__(self, instance, property_name, *target, **kwargs):
 super(Animation, self).__init__()
 self.instance = instance
 self.property = self.get_property(instance, property_name)

 try:
 new_target = kwargs.pop('target')
 except KeyError:
 pass
 else:
 if target:
 raise ValueError(
 'Target specified as both positional and keyword argument')
 target = new_target

 self.target = self.property.adjust_value(target)

 self.dynamic = (
 self.dynamic or 'timing' in kwargs or kwargs.pop('dynamic', False))
 if not self.dynamic:
 self.chain(lambda: self.property.do_replacements(instance))

 self.time = kwargs.pop('time', 1)
 self.delay = kwargs.pop('delay', 0)
 easing = kwargs.pop('easing', 'linear')
 timing = kwargs.pop('timing', None)

 if timing == 'infinite':
 self.get_time = self._infinite_timing
 elif timing == 'absolute':
 self.get_time = self._absolute_timing
 elif timing:
 self.get_time = lambda: timing(
 self.clock.time, self.start_time, self.time)

 if isinstance(easing, string_types):
 e = easing_module
 for attr in easing.split('.'):
 e = getattr(e, attr)
 self.easing = e
 else:
 self.easing = easing

 @classmethod
 def get_property(cls, instance, property_name):
 """Get a property object off an instance's class"""
 return getattr(type(instance), property_name)

 def __new__(cls, instance, property_name, *args, **kwargs):
 if kwargs.get('dynamic', False):
 # We need the target to act the same as the animated property
 # (wrt adjust_value: being scalar/tuple, etc).
 # An AnimatedProperty needs to be on a class, we can't just put
 # a descriptor on an instance.
 # So, we create a trivial subclass that has the target property.
 prop = cls.get_property(instance, property_name)

 class AnimatedAnimation(cls):
 """A more dynamic flavor of gillcup.Animation"""
 target = prop.get_target_property()
 strength = AnimatedProperty(1)
 ani_class = AnimatedAnimation
 else:
 ani_class = cls
 super_new = super(Animation, cls).__new__
 return super_new(ani_class, instance, property_name, *args, **kwargs)

 def __call__(self):
 self.expire()
 self.parent = self.property.animate(self.instance, self)
 self.start_time = self.clock.time + self.delay
 self.clock.schedule(self.trigger_chain, self.time + self.delay)

 @property
 def value(self):
 """Value to be used for the property this animation is on"""
 parent_value = self.parent.value
 target = self.target
 return self.property.tween_values(
 self.compute_value, parent_value, target)

 def get_time(self): # pylint: disable=E0202
 """Get the local time for tweening, usually in the [0..1] range"""
 elapsed = self.clock.time - self.start_time
 if elapsed <= 0:
 return 0
 if elapsed >= self.time:
 return 1
 else:
 return elapsed / self.time
 get_time.finite = True

 def _absolute_timing(self):
 return self.clock.time / self.time

 def _infinite_timing(self):
 return (self.clock.time - self.start_time) / self.time

 def compute_value(self, previous, target):
 """Given the previous value and a target, compute value"""
 t = self.easing(self.get_time()) * self.strength
 return previous * (1 - t) + target * t

 def get_replacement(self):
 if not self.dynamic and self.get_time() >= 1:
 # Not gonna change from now on
 return ConstantEffect(self.value)
 else:
 self.parent = self.parent.get_replacement()
 return self

[docs]class Add(Animation):
 """An additive animation: the target value is added to the original
 """
 dynamic = True

 def compute_value(self, previous, target):
 t = self.easing(self.get_time())
 return previous + target * t

[docs]class Multiply(Animation):
 """A multiplicative animation: target value is multiplied to the original
 """
 dynamic = True

 def compute_value(self, previous, target):
 t = self.easing(self.get_time())
 return previous * ((1 - t) + target * t)

[docs]class Computed(Animation):
 """A custom-valued animation: the target is computed by a function

 Pass a **func** keyword argument with the function to the constructor.

 The function will get one argument: the time elapsed, normalized by the
 animation's `timing` function.
 """
 def __init__(self, instance, property_name, func, **kwargs):
 self.func = func
 prop = self.get_property(instance, property_name)
 kwargs.setdefault('target', [prop.default])
 super(Computed, self).__init__(instance, property_name, **kwargs)

 def compute_value(self, previous, target):
 t = self.get_time()
 return self.func(t)

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_images/easings.png
.out .in_out out in

Ain

il o
(Alod)

—

auls

o
o

—

o
o

—

o
o

|enuauodxa 4eIN241D

° o
Ao A Ho
! [

onseld 300ysiano

o
)

25unoq

_modules/gillcup/easing.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 		gillcup »

 Source code for gillcup.easing

#! /usr/bin/python
Encoding: UTF-8

"""
Adapded roughly and partially from Robert Penner's Easing Equations, as they
appear in the Qt library. The original license follows:

TERMS OF USE - EASING EQUATIONS

Open source under the BSD License.

Copyright © 2001 Robert Penner

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of the author nor the names of contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""

from __future__ import unicode_literals, division, print_function

import sys
import functools
import math

[docs]def normalized(func):
 """Decorator that normalizes an easing function

 Normalizing is done so that func(0) == 0 and func(1) == 1.
 """
 minimum = func(0)
 maximum = func(1)
 if (minimum, maximum) == (0, 1):
 return func
 range_ = maximum - minimum

 @functools.wraps(func)
 def _normalized(t):
 return (func(t) - minimum) / range_
 _add_postfix(_normalized, func, 'normalized')

 return _normalized

def _add_postfix(decorated, func, postfix):
 try:
 decorated.__name__ = str(func.__name__ + '_' + postfix)
 except AttributeError: # pragma: no cover
 pass

def ease_out(func):
 """Given an "in" easing function, return corresponding "out" function"""
 def _ease_out(t):
 return 1 - func(1 - t)
 _add_postfix(_ease_out, func, 'out')
 return _ease_out

def ease_out_in(func):
 """Given an "in" easing function, return corresponding "out-in" function"""
 def _ease_out_in(t):
 if t < 0.5:
 return (1 - func(1 - 2 * t)) / 2
 else:
 return func(2 * (t - .5)) / 2 + .5
 _add_postfix(_ease_out_in, func, 'out_in')
 return _ease_out_in

def ease_in_out(func):
 """Given an "in" easing function, return corresponding "in-out" function"""
 def _ease_in_out(t):
 if t < 0.5:
 return func(2 * t) / 2
 else:
 return 1 - func(1 - 2 * (t - .5)) / 2
 _add_postfix(_ease_in_out, func, 'in_out')
 return _ease_in_out

def ease_in(func):
 """Return ``func`` itself. Included for symmetry."""
 return func

[docs]def easefunc(func):
 """Decorator for easing functions.

 Adds the **in_**, **out**, **in_out** and **out_in** attributes to
 an easing function.
 """
 func.in_ = ease_in(func)
 func.out = ease_out(func)
 func.in_out = ease_in_out(func)
 func.out_in = ease_out_in(func)
 return func

@easefunc
[docs]def linear(t):
 """Linear interpolation

 t → t
 """
 return t

@easefunc
[docs]def quadratic(t):
 """Quadratic easing

 t → t**2
 """
 return t ** 2

@easefunc
[docs]def cubic(t):
 """Cubic easing

 t → t**3
 """
 return t ** 3

@easefunc
[docs]def quartic(t):
 """Quartic easing

 t → t**4
 """
 return t ** 4

@easefunc
[docs]def quintic(t):
 """Quintic easing

 t → t**5
 """
 return t ** 5

@easefunc
[docs]def sine(t):
 """Sinusoidal easing

 Quarter of a cosine wave
 """
 return (-math.cos(t / 2 * math.pi) + 1)

@easefunc
[docs]def exponential(t):
 """Exponential easing
 """
 if t in (0, 1):
 return t
 else:
 return 2.0 ** (10 * (t - 1)) - 0.001

@easefunc
[docs]def circular(t):
 """Circular easing
 """
 try:
 return 1 - math.sqrt(1 - t * t)
 except ValueError:
 return 1

[docs]def elastic(period, amplitude=1):
 """Elastic easing factory
 """
 @easefunc
 def _elastic(t):
 b = exponential(t) * math.cos((1 - t) * 2 * math.pi / period)
 return b * amplitude
 return _elastic

[docs]def overshoot(amount):
 """Overshoot easing factory
 """
 @easefunc
 def _overshoot(t):
 return t * t * ((amount + 1) * t - amount)
 return _overshoot

def _bounce_helper(t, c, a):
 t = 1 - t
 if t == 1:
 return 1 - c
 if t < 4 / 11:
 return 1 - c * (7.5625 * t * t)
 elif t < 8 / 11:
 t -= 6 / 11.0
 return 1 + a * (1. - (7.5625 * t * t + .75)) - c
 elif t < 10 / 11:
 t -= 9 / 11
 return 1 + a * (1. - (7.5625 * t * t + .9375)) - c
 else:
 t -= 21 / 22
 return 1 + a * (1. - (7.5625 * t * t + .984375)) - c

[docs]def bounce(amplitude):
 """Bounce easing factory
 """
 @easefunc
 def _bounce(t):
 return _bounce_helper(t, 1, amplitude)
 return _bounce

Execute the file for a gallery of easing funcs (matplotlib must be installed)

elastic_example = elastic(.15)
overshoot_example = overshoot(1)
bounce_example = bounce(1)

def showcase(
 items='(poly) sine exponential circular elastic_example '
 'overshoot_example bounce_example'.split(),
 filename=None,
): # pragma: no cover; pylint: disable=R0914, W0621, W0404, F0401
 """Show graphs of the easing functions in this module
 """
 import pylab
 from matplotlib import pyplot
 from matplotlib.ticker import MultipleLocator

 pyplot.figure(figsize=(7, 7))
 pyplot.subplots_adjust(wspace=0.3, hspace=0.7)

 time = pylab.arange(0.0, 1.01, 0.01)
 for i, n in enumerate(items):
 if n == '(poly)':
 funcs = 'linear quadratic cubic quartic quintic'.split()
 else:
 funcs = [n]
 for j, a in enumerate('in_ out in_out out_in'.split()):
 ax = pylab.subplot(len(items), 4, i * 4 + 1 + j)
 ax.xaxis.set_major_locator(MultipleLocator(1))
 ax.yaxis.set_major_locator(MultipleLocator(1))
 for funcname in funcs:
 func = getattr(globals()[funcname], a)
 s = [func(t) for t in time]
 pylab.plot(time, s, linewidth=1.0)
 if i == 0:
 pylab.title('.' + a)
 if j == 0:
 title, sep, _end = n.partition('_example')
 pylab.ylabel(title)
 if filename:
 pylab.savefig(filename, transparent=True)
 else:
 pylab.show()

if __name__ == '__main__':
 try:
 filename = sys.argv[1]
 except IndexError:
 filename = None
 showcase(filename=filename)

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

_modules/gillcup/clock.html

 Navigation

 		
 index

 		
 modules |

 		Gillcup 0.2.1 documentation »

 		Module code »

 		gillcup »

 Source code for gillcup.clock

Encoding: UTF-8
"""Gillcup's Clock Class

In Gillcup, animation means two things: running code at specified times,
and changing object properties with time.

You will notice that the preceding sentence mentions time quite a lot. But
what is this time?

You could determine time by looking at the computer's clock, but that would
only work with real-time animations. When you'd want to render a movie,
where each frame takes 2 seconds to draw and there are 25 frames per
second, you'd be stuck.
That's why Gillcup introduces a flexible source of time, the Clock, which
keeps track of time and schedules actions.

Time is measured in “time units”.
What a time unit means is entirely up to the application – it could be
seconds, movie/simulation frames, etc.
"""

from __future__ import unicode_literals, division, print_function

import collections
import weakref
import heapq

from gillcup.properties import AnimatedProperty

_HeapEntry = collections.namedtuple('EventHeapEntry', 'time index action')

Next action index; used to keep FIFO ordering for actions scheduled
for the same time
next_index = 0

class Clock(object):
 """Keeps track of time and schedules events.

 Attributes:

 .. attribute:: time

 The current time on the clock. Never assign to it directly;
 use :meth:`~gillcup.Clock.advance()` instead.
 """
 def __init__(self):
 # Time on the clock
 self.time = 0

 # Heap queue of scheduled actions
 self.events = []

 # Update functions (see `schedule_update_function`)
 self.update_functions = WeakSet()

 # Recursion guard flag for advance()
 self.advancing = False

 # List of dependent clocks
 self._subclocks = set()

 speed = AnimatedProperty(1, docstring="""Speed of the clock.

 When calling update(), the interval is multiplied by this value.

 The speed is an AnimatedProperty. When changing, beware that it is only
 checked when advance() is called or when a scheduled action is run,
 so speed animations will be only approximate.
 For better accuracy, call :meth:`~gillcup.Clock.advance`
 with small *dt*, or schedule a periodic dummy action at small inervals.
 """)

 @property
 def _next_event(self):
 try:
 event = self.events[0]
 events = [(event.time - self.time, event.index, self, event)]
 except IndexError:
 events = []
 for subclock in self._subclocks:
 event = subclock._next_event # pylint: disable=W0212
 if event:
 remain, index, clock, event = event
 try:
 remain /= subclock.speed
 except ZeroDivisionError:
 # zero speed – events never happen
 pass
 else:
 events.append((remain, index, clock, event))
 try:
 return min(events)
 except ValueError:
 return None

 def advance(self, dt):
 """Call to advance the clock's time

 Steps the clock dt units to the future, pausing at times when actions
 are scheduled, and running them.

 Attempting to move to the past (dt<0) will raise an error.
 """
 dt *= self.speed
 if dt < 0:
 raise ValueError('Moving backwards in time')
 if self.advancing:
 raise RuntimeError('Clock.advance called recursively')
 self.advancing = True
 try:
 while True:
 event = self._next_event
 if not event:
 break
 event_dt, _index, clock, event = event
 if event_dt > dt:
 break
 if dt:
 self._advance(event_dt)
 self._run_update_functions()
 dt -= event_dt
 _evt = heapq.heappop(clock.events)
 assert _evt is event and clock.time == event.time
 clock.time = event.time
 event.action()
 if dt:
 self._advance(dt)
 self._run_update_functions()
 finally:
 self.advancing = False

 def _advance(self, dt):
 self.time += dt
 for subclock in self._subclocks:
 subclock._advance(dt * subclock.speed) # pylint: disable=W0212

 def schedule(self, action, dt=0):
 """Schedule an action to be run "dt" time units from the current time

 Scheduling is stable: if two things are scheduled for the same
 time, they will be called in the order they were scheduled.

 Scheduling an action in the past (dt<0) will raise an error.

 If the scheduled callable has a “schedule_callback” method, it will
 be called with the clock and the time it's been scheduled at.
 """
 global next_index
 if dt < 0:
 raise ValueError('Scheduling an action in the past')
 next_index += 1
 scheduled_time = self.time + dt
 entry = _HeapEntry(scheduled_time, next_index, action)
 heapq.heappush(self.events, entry)
 try:
 schedule_callback = action.schedule_callback
 except AttributeError:
 pass
 else:
 schedule_callback(self, scheduled_time)

 def schedule_update_function(self, function):
 """Schedule a function to be called every time the clock advances

 Then function will be called a lot, so it shouldn't be very expensive.

 Only a weak reference is made to the function, so the caller should
 ensure another reference to it is retained as long as it should be
 called.
 """
 self.update_functions.add(function)

 def unschedule_update_function(self, function):
 """Unschedule a function scheduled by `schedule_update_function`
 """
 # Don't raise an error if the function is no longer there – we're
 # dealing with weakrefs.
 self.update_functions.discard(function)

 def _run_update_functions(self):
 for update_function in list(self.update_functions):
 update_function()
 for subclock in self._subclocks:
 subclock._run_update_functions() # pylint: disable=W0212

class Subclock(Clock):
 """A Clock that advances in sync with another Clock

 A Subclock advances whenever its *parent* clock does.
 Its `speed` attribute specifies the relative speed relative to the parent
 clock. For example, if speed==2, the subclock will run twice as fast as its
 parent clock.

 Unlike clocks synchronized via actions or update functions, the actions
 scheduled on a parent Clock and all subclocks are run in the correct
 sequence, with all clocks at the correct times when each action is run.
 """

 def __init__(self, parent, speed=1):
 super(Subclock, self).__init__()
 self.speed = speed
 parent._subclocks.add(self) # pylint: disable=W0212

try: # pragma: no cover
 WeakSet = weakref.WeakSet # pylint: disable=E1101
except AttributeError: # pragma: no cover

 class WeakSet(weakref.WeakKeyDictionary):
 """Stripped-down WeakSet implementation for Python 2.6

 (only defines the methods we need)
 """
 def add(self, item):
 """Add an item to the set"""
 self[item] = None

 def discard(self, item):
 """Remove an item from the set"""
 self.pop(item)

 © Copyright 2010-2012, Petr Viktorin.
 Created using Sphinx 1.2.2.

